Dumont, E., & Monari, A. (2015). Understanding DNA under oxidative stress and sensitization: the role of molecular modeling. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00043
Lomax, M. E., Folkes, L. K., & O’Neill, P. (2013). Biological Consequences of Radiation-induced DNA Damage: Relevance to Radiotherapy. Clinical Oncology, 25(10), 578-585. doi:10.1016/j.clon.2013.06.007
Magnander, K., & Elmroth, K. (2012). Biological consequences of formation and repair of complex DNA damage. Cancer Letters, 327(1-2), 90-96. doi:10.1016/j.canlet.2012.02.013
[+]
Dumont, E., & Monari, A. (2015). Understanding DNA under oxidative stress and sensitization: the role of molecular modeling. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00043
Lomax, M. E., Folkes, L. K., & O’Neill, P. (2013). Biological Consequences of Radiation-induced DNA Damage: Relevance to Radiotherapy. Clinical Oncology, 25(10), 578-585. doi:10.1016/j.clon.2013.06.007
Magnander, K., & Elmroth, K. (2012). Biological consequences of formation and repair of complex DNA damage. Cancer Letters, 327(1-2), 90-96. doi:10.1016/j.canlet.2012.02.013
Drouin, R., & Therrien, J.-P. (1997). UVB-induced Cyclobutane Pyrimidine Dimer Frequency Correlates with Skin Cancer Mutational Hotspots in p53. Photochemistry and Photobiology, 66(5), 719-726. doi:10.1111/j.1751-1097.1997.tb03213.x
Huang, X. X., Bernerd, F., & Halliday, G. M. (2009). Ultraviolet A within Sunlight Induces Mutations in the Epidermal Basal Layer of Engineered Human Skin. The American Journal of Pathology, 174(4), 1534-1543. doi:10.2353/ajpath.2009.080318
Pfeifer, G. P., You, Y.-H., & Besaratinia, A. (2005). Mutations induced by ultraviolet light. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 19-31. doi:10.1016/j.mrfmmm.2004.06.057
Durbeej, B., & Eriksson, L. A. (2003). On the Formation of Cyclobutane Pyrimidine Dimers in UV-irradiated DNA: Why are Thymines More Reactive?¶. Photochemistry and Photobiology, 78(2), 159. doi:10.1562/0031-8655(2003)078<0159:otfocp>2.0.co;2
Bucher, D. B., Schlueter, A., Carell, T., & Zinth, W. (2014). Watson-Crick Base Pairing Controls Excited-State Decay in Natural DNA. Angewandte Chemie International Edition, 53(42), 11366-11369. doi:10.1002/anie.201406286
Cadet, J., Sage, E., & Douki, T. (2005). Ultraviolet radiation-mediated damage to cellular DNA. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 3-17. doi:10.1016/j.mrfmmm.2004.09.012
Sinha, R. P., & Häder, D.-P. (2002). UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences, 1(4), 225-236. doi:10.1039/b201230h
Cadet, J., & Wagner, J. R. (2013). DNA Base Damage by Reactive Oxygen Species, Oxidizing Agents, and UV Radiation. Cold Spring Harbor Perspectives in Biology, 5(2), a012559-a012559. doi:10.1101/cshperspect.a012559
Grollman, A. P., & Moriya, M. (1993). Mutagenesis by 8-oxoguanine: an enemy within. Trends in Genetics, 9(7), 246-249. doi:10.1016/0168-9525(93)90089-z
Nikitaki, Z., Hellweg, C. E., Georgakilas, A. G., & Ravanat, J.-L. (2015). Stress-induced DNA damage biomarkers: applications and limitations. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00035
Dumont, E., Grüber, R., Bignon, E., Morell, C., Moreau, Y., Monari, A., & Ravanat, J.-L. (2015). Probing the reactivity of singlet oxygen with purines. Nucleic Acids Research, 44(1), 56-62. doi:10.1093/nar/gkv1364
Cadet, J., Delatour, T., Douki, T., Gasparutto, D., Pouget, J.-P., Ravanat, J.-L., & Sauvaigo, S. (1999). Hydroxyl radicals and DNA base damage. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 424(1-2), 9-21. doi:10.1016/s0027-5107(99)00004-4
Bellon, S., Shikazono, N., Cunniffe, S., Lomax, M., & O’Neill, P. (2009). Processing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic. Nucleic Acids Research, 37(13), 4430-4440. doi:10.1093/nar/gkp422
Rogstad, D. K., Heo, J., Vaidehi, N., Goddard, W. A., Burdzy, A., & Sowers, L. C. (2004). 5-Formyluracil-Induced Perturbations of DNA Function†. Biochemistry, 43(19), 5688-5697. doi:10.1021/bi030247j
Epe, B. (2012). DNA damage spectra induced by photosensitization. Photochem. Photobiol. Sci., 11(1), 98-106. doi:10.1039/c1pp05190c
Cadet, J., Douki, T., & Ravanat, J.-L. (2014). Oxidatively Generated Damage to Cellular DNA by UVB and UVA Radiation,. Photochemistry and Photobiology, 91(1), 140-155. doi:10.1111/php.12368
Marazzi, M., Wibowo, M., Gattuso, H., Dumont, E., Roca-Sanjuán, D., & Monari, A. (2016). Hydrogen abstraction by photoexcited benzophenone: consequences for DNA photosensitization. Physical Chemistry Chemical Physics, 18(11), 7829-7836. doi:10.1039/c5cp07938a
Bignon, E., Marazzi, M., Besancenot, V., Gattuso, H., Drouot, G., Morell, C., … Monari, A. (2017). Ibuprofen and ketoprofen potentiate UVA-induced cell death by a photosensitization process. Scientific Reports, 7(1). doi:10.1038/s41598-017-09406-8
Gattuso, H., Dumont, E., Marazzi, M., & Monari, A. (2016). Two-photon-absorption DNA sensitization via solvated electron production: unraveling photochemical pathways by molecular modeling and simulation. Physical Chemistry Chemical Physics, 18(27), 18598-18606. doi:10.1039/c6cp02592g
Zheng, Y.-C., Zheng, M.-L., Li, K., Chen, S., Zhao, Z.-S., Wang, X.-S., & Duan, X.-M. (2015). Novel carbazole-based two-photon photosensitizer for efficient DNA photocleavage in anaerobic condition using near-infrared light. RSC Advances, 5(1), 770-774. doi:10.1039/c4ra11133h
Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e
Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Yamaji, M., Lhiaubet-Vallet, V., Cuquerella, M. C., & Miranda, M. A. (2013). Two-Photon Chemistry from Upper Triplet States of Thymine. Journal of the American Chemical Society, 135(44), 16714-16719. doi:10.1021/ja408997j
Dumont, E., Wibowo, M., Roca-Sanjuán, D., Garavelli, M., Assfeld, X., & Monari, A. (2015). Resolving the Benzophenone DNA-Photosensitization Mechanism at QM/MM Level. The Journal of Physical Chemistry Letters, 6(4), 576-580. doi:10.1021/jz502562d
Gattuso, H., Dumont, E., Chipot, C., Monari, A., & Dehez, F. (2016). Thermodynamics of DNA: sensitizer recognition. Characterizing binding motifs with all-atom simulations. Physical Chemistry Chemical Physics, 18(48), 33180-33186. doi:10.1039/c6cp06078a
Washington, I., Brooks, C., Turro, N. J., & Nakanishi, K. (2004). Porphyrins As Photosensitizers To Enhance Night Vision. Journal of the American Chemical Society, 126(32), 9892-9893. doi:10.1021/ja0486317
Wang, K., Poon, C. T., Choi, C. Y., Wong, W.-K., Kwong, D. W. J., Yu, F. Q., … Li, Z. Y. (2012). Synthesis, circular dichroism, DNA cleavage and singlet oxygen photogeneration of 4-amidinophenyl porphyrins. Journal of Porphyrins and Phthalocyanines, 16(01), 85-92. doi:10.1142/s108842461100435x
Ethirajan, M., Chen, Y., Joshi, P., & Pandey, R. K. (2011). The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev., 40(1), 340-362. doi:10.1039/b915149b
Nyman, E. S., & Hynninen, P. H. (2004). Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 73(1-2), 1-28. doi:10.1016/j.jphotobiol.2003.10.002
Bonnett, R. (1995). Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chemical Society Reviews, 24(1), 19. doi:10.1039/cs9952400019
Li, M.-D., Su, T., Ma, J., Liu, M., Liu, H., Li, X., & Phillips, D. L. (2013). Phototriggered Release of a Leaving Group in Ketoprofen Derivatives via a Benzylic Carbanion Pathway, But not via a Biradical Pathway. Chemistry - A European Journal, 19(34), 11241-11250. doi:10.1002/chem.201300285
Musa, K. A. K., Matxain, J. M., & Eriksson, L. A. (2007). Mechanism of Photoinduced Decomposition of Ketoprofen. Journal of Medicinal Chemistry, 50(8), 1735-1743. doi:10.1021/jm060697k
Sánchez-Borges, M., Capriles-Hulett, A., & Caballero-Fonseca, F. (2005). Risk of skin reactions when using ibuprofen-based medicines. Expert Opinion on Drug Safety, 4(5), 837-848. doi:10.1517/14740338.4.5.837
Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2009). Photosensitized DNA Damage: The Case of Fluoroquinolones. Photochemistry and Photobiology, 85(4), 861-868. doi:10.1111/j.1751-1097.2009.00548.x
Colasson, B., Credi, A., & Ragazzon, G. (2016). Light-driven molecular machines based on ruthenium(II) polypyridine complexes: Strategies and recent advances. Coordination Chemistry Reviews, 325, 125-134. doi:10.1016/j.ccr.2016.02.012
Véry, T., Ambrosek, D., Otsuka, M., Gourlaouen, C., Assfeld, X., Monari, A., & Daniel, C. (2014). Photophysical Properties of Ruthenium(II) Polypyridyl DNA Intercalators: Effects of the Molecular Surroundings Investigated by Theory. Chemistry - A European Journal, 20(40), 12901-12909. doi:10.1002/chem.201402963
Chantzis, A., Very, T., Daniel, C., Monari, A., & Assfeld, X. (2013). Theoretical evidence of photo-induced charge transfer from DNA to intercalated ruthenium (II) organometallic complexes. Chemical Physics Letters, 578, 133-137. doi:10.1016/j.cplett.2013.05.068
Daniel, C. (2015). Photochemistry and photophysics of transition metal complexes: Quantum chemistry. Coordination Chemistry Reviews, 282-283, 19-32. doi:10.1016/j.ccr.2014.05.023
Ambrosek, D., Loos, P.-F., Assfeld, X., & Daniel, C. (2010). A theoretical study of Ru(II) polypyridyl DNA intercalatorsStructure and electronic absorption spectroscopy of [Ru(phen)2(dppz)]2+ and [Ru(tap)2(dppz)]2+ complexes intercalated in guanine–cytosine base pairs. Journal of Inorganic Biochemistry, 104(9), 893-901. doi:10.1016/j.jinorgbio.2010.04.002
Olmon, E. D., Sontz, P. A., Blanco-Rodríguez, A. M., Towrie, M., Clark, I. P., Vlček, A., & Barton, J. K. (2011). Charge Photoinjection in Intercalated and Covalently Bound [Re(CO)3(dppz)(py)]+–DNA Constructs Monitored by Time-Resolved Visible and Infrared Spectroscopy. Journal of the American Chemical Society, 133(34), 13718-13730. doi:10.1021/ja205568r
Fumanal, M., Vela, S., Gattuso, H., Monari, A., & Daniel, C. (2018). Absorption Spectroscopy and Photophysics of a ReI
-dppz Probe for DNA-Mediated Charge Transport. Chemistry - A European Journal, 24(54), 14425-14435. doi:10.1002/chem.201801980
Garcia-Lainez, G., Martínez-Reig, A. M., Limones-Herrero, D., Consuelo Jiménez, M., Miranda, M. A., & Andreu, I. (2018). Photo(geno)toxicity changes associated with hydroxylation of the aromatic chromophores during diclofenac metabolism. Toxicology and Applied Pharmacology, 341, 51-55. doi:10.1016/j.taap.2018.01.005
Chiarelli-Neto, O., Ferreira, A. S., Martins, W. K., Pavani, C., Severino, D., Faião-Flores, F., … Baptista, M. S. (2014). Melanin Photosensitization and the Effect of Visible Light on Epithelial Cells. PLoS ONE, 9(11), e113266. doi:10.1371/journal.pone.0113266
Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Cuquerella, M. C., Lhiaubet-Vallet, V., & Miranda, M. A. (2013). Photosensitization of DNA by 5-Methyl-2-Pyrimidone Deoxyribonucleoside: (6-4) Photoproduct as a Possible Trojan Horse. Angewandte Chemie International Edition, 52(25), 6476-6479. doi:10.1002/anie.201302176
Bignon, E., Gattuso, H., Morell, C., Dumont, E., & Monari, A. (2015). DNA Photosensitization by an «Insider»: Photophysics and Triplet Energy Transfer of 5-Methyl-2-pyrimidone Deoxyribonucleoside. Chemistry - A European Journal, 21(32), 11509-11516. doi:10.1002/chem.201501212
Dehez, F., Gattuso, H., Bignon, E., Morell, C., Dumont, E., & Monari, A. (2017). Conformational polymorphism or structural invariance in DNA photoinduced lesions: implications for repair rates. Nucleic Acids Research, 45(7), 3654-3662. doi:10.1093/nar/gkx148
Aparici-Espert, I., Garcia-Lainez, G., Andreu, I., Miranda, M. A., & Lhiaubet-Vallet, V. (2018). Oxidatively Generated Lesions as Internal Photosensitizers for Pyrimidine Dimerization in DNA. ACS Chemical Biology, 13(3), 542-547. doi:10.1021/acschembio.7b01097
Segarra-Martí, J., Francés-Monerris, A., Roca-Sanjuán, D., & Merchán, M. (2016). Assessment of the Potential Energy Hypersurfaces in Thymine within Multiconfigurational Theory: CASSCF vs. CASPT2. Molecules, 21(12), 1666. doi:10.3390/molecules21121666
Olaso-González, G., Roca-Sanjuán, D., Serrano-Andrés, L., & Merchán, M. (2006). Toward the understanding of DNA fluorescence: The singlet excimer of cytosine. The Journal of Chemical Physics, 125(23), 231102. doi:10.1063/1.2408411
Roca-Sanjuán, D., Olaso-González, G., González-Ramírez, I., Serrano-Andrés, L., & Merchán, M. (2008). Molecular Basis of DNA Photodimerization: Intrinsic Production of Cyclobutane Cytosine Dimers. Journal of the American Chemical Society, 130(32), 10768-10779. doi:10.1021/ja803068n
Climent, T., González-Ramírez, I., González-Luque, R., Merchán, M., & Serrano-Andrés, L. (2010). Cyclobutane Pyrimidine Photodimerization of DNA/RNA Nucleobases in the Triplet State. The Journal of Physical Chemistry Letters, 1(14), 2072-2076. doi:10.1021/jz100601p
Aquilante, F., Autschbach, J., Carlson, R. K., Chibotaru, L. F., Delcey, M. G., De Vico, L., … Lindh, R. (2015). Molcas8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. Journal of Computational Chemistry, 37(5), 506-541. doi:10.1002/jcc.24221
Hirata, S., & Head-Gordon, M. (1999). Time-dependent density functional theory within the Tamm–Dancoff approximation. Chemical Physics Letters, 314(3-4), 291-299. doi:10.1016/s0009-2614(99)01149-5
Martin, R. L. (2003). Natural transition orbitals. The Journal of Chemical Physics, 118(11), 4775-4777. doi:10.1063/1.1558471
Etienne, T., Assfeld, X., & Monari, A. (2014). Toward a Quantitative Assessment of Electronic Transitions’ Charge-Transfer Character. Journal of Chemical Theory and Computation, 10(9), 3896-3905. doi:10.1021/ct5003994
Etienne, T., Assfeld, X., & Monari, A. (2014). New Insight into the Topology of Excited States through Detachment/Attachment Density Matrices-Based Centroids of Charge. Journal of Chemical Theory and Computation, 10(9), 3906-3914. doi:10.1021/ct500400s
González-Ramírez, I., Roca-Sanjuán, D., Climent, T., Serrano-Pérez, J. J., Merchán, M., & Serrano-Andrés, L. (2010). On the photoproduction of DNA/RNA cyclobutane pyrimidine dimers. Theoretical Chemistry Accounts, 128(4-6), 705-711. doi:10.1007/s00214-010-0854-z
Serrano-Pérez, J. J., González-Ramírez, I., Coto, P. B., Merchán, M., & Serrano-Andrés, L. (2008). Theoretical Insight into the Intrinsic Ultrafast Formation of Cyclobutane Pyrimidine Dimers in UV-Irradiated DNA: Thymine versus Cytosine. The Journal of Physical Chemistry B, 112(45), 14096-14098. doi:10.1021/jp806794x
Malmqvist, P. Å., Roos, B. O., & Schimmelpfennig, B. (2002). The restricted active space (RAS) state interaction approach with spin–orbit coupling. Chemical Physics Letters, 357(3-4), 230-240. doi:10.1016/s0009-2614(02)00498-0
Roos, B. O., & Malmqvist, P.-�ke. (2004). Relativistic quantum chemistry: the multiconfigurational approach. Physical Chemistry Chemical Physics, 6(11), 2919. doi:10.1039/b401472n
Heß, B. A., Marian, C. M., Wahlgren, U., & Gropen, O. (1996). A mean-field spin-orbit method applicable to correlated wavefunctions. Chemical Physics Letters, 251(5-6), 365-371. doi:10.1016/0009-2614(96)00119-4
Christiansen, O., Gauss, J., & Schimmelpfennig, B. (2000). Spin-orbit coupling constants from coupled-cluster response theory. Physical Chemistry Chemical Physics, 2(5), 965-971. doi:10.1039/a908995k
Francés-Monerris, A., Segarra-Martí, J., Merchán, M., & Roca-Sanjuán, D. (2016). Theoretical study on the excited-state π-stacking versus intermolecular hydrogen-transfer processes in the guanine–cytosine/cytosine trimer. Theoretical Chemistry Accounts, 135(2). doi:10.1007/s00214-015-1762-z
Londesborough, M. G. S., Dolanský, J., Jelínek, T., Kennedy, J. D., Císařová, I., Kennedy, R. D., … Clegg, W. (2018). Substitution of the laser borane anti-B18H22 with pyridine: a structural and photophysical study of some unusually structured macropolyhedral boron hydrides. Dalton Transactions, 47(5), 1709-1725. doi:10.1039/c7dt03823b
Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., … Kollman, P. A. (1995). A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. Journal of the American Chemical Society, 117(19), 5179-5197. doi:10.1021/ja00124a002
Wang, J., Cieplak, P., & Kollman, P. A. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry, 21(12), 1049-1074. doi:10.1002/1096-987x(200009)21:12<1049::aid-jcc3>3.0.co;2-f
Hopkins, C. W., Le Grand, S., Walker, R. C., & Roitberg, A. E. (2015). Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. Journal of Chemical Theory and Computation, 11(4), 1864-1874. doi:10.1021/ct5010406
Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781-1802. doi:10.1002/jcc.20289
Lavery, R., Moakher, M., Maddocks, J. H., Petkeviciute, D., & Zakrzewska, K. (2009). Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Research, 37(17), 5917-5929. doi:10.1093/nar/gkp608
Götz, A. W., Clark, M. A., & Walker, R. C. (2013). An extensible interface for QM/MM molecular dynamics simulations with AMBER. Journal of Computational Chemistry, 35(2), 95-108. doi:10.1002/jcc.23444
Giussani, A., Segarra-Martí, J., Roca-Sanjuán, D., & Merchán, M. (2013). Excitation of Nucleobases from a Computational Perspective I: Reaction Paths. Photoinduced Phenomena in Nucleic Acids I, 57-97. doi:10.1007/128_2013_501
Improta, R., Santoro, F., & Blancafort, L. (2016). Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chemical Reviews, 116(6), 3540-3593. doi:10.1021/acs.chemrev.5b00444
Matsika, S. (2014). Modified Nucleobases. Photoinduced Phenomena in Nucleic Acids I, 209-243. doi:10.1007/128_2014_532
Borin, A. C. (2018). Light and nucleobases: A good interaction for everybody. Journal of Luminescence, 198, 433-437. doi:10.1016/j.jlumin.2018.02.066
Conti, I., & Garavelli, M. (2018). Evolution of the Excitonic State of DNA Stacked Thymines: Intrabase ππ* → S0 Decay Paths Account for Ultrafast (Subpicosecond) and Longer (>100 ps) Deactivations. The Journal of Physical Chemistry Letters, 9(9), 2373-2379. doi:10.1021/acs.jpclett.8b00698
El-Sayed, M. A. (1968). Triplet state. Its radiative and nonradiative properties. Accounts of Chemical Research, 1(1), 8-16. doi:10.1021/ar50001a002
Privat, E. (1996). A proposed mechanism for the mutagenicity of 5-formyluracil. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 354(2), 151-156. doi:10.1016/0027-5107(96)00005-x
[-]