Mostrar el registro sencillo del ítem
dc.contributor.author | Francés-Monerris, Antonio | es_ES |
dc.contributor.author | Hognon, Cécilia | es_ES |
dc.contributor.author | Miranda Alonso, Miguel Ángel | es_ES |
dc.contributor.author | Lhiaubet, Virginie Lyria | es_ES |
dc.contributor.author | Monari, Antonio | es_ES |
dc.date.accessioned | 2020-06-03T05:53:24Z | |
dc.date.available | 2020-06-03T05:53:24Z | |
dc.date.issued | 2018-10-28 | es_ES |
dc.identifier.issn | 1463-9076 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145122 | |
dc.description.abstract | [EN] Nucleic acids are constantly exposed to external agents that can induce chemical and photochemical damage. In spite of the great advances achieved in the last years, some molecular mechanisms of DNA damage are not completely understood yet. A recent experimental report (I. Aparici-Espert et al., ACS Chem. Biol. 2018, 13, 542) proved the ability of 5-formyluracil (ForU), a common oxidatively generated product of thymine, to act as an intrinsic sensitizer of nucleic acids, causing single strand breaks and cyclobutane pyrimidine dimers in plasmid DNA. In the present contribution, we use theoretical methodologies to study the triplet photosensitization mechanism of thymine exerted by ForU in a model dimer and in DNA environment. The photochemical pathways in the former system are described combining the CASPT2 and TD-DFT methods, whereas molecular dynamics simulations and QM/MM calculations are employed for the DNA duplex. It is unambiguously shown that the (1)n,* state localised in ForU mediates the population of the triplet manifold, most likely the (3),* state centred in ForU, whereas the (3),* state localized in thymine can be populated via triplet-triplet energy transfer given the small energy barrier of <0.23 eV determined for this pathway. | es_ES |
dc.description.sponsorship | A. F. M. is grateful to Région Grand Est government (France) for the financial support. Spanish government (CTQ2015-70164P and CTQ2017-87054-C2-2-P projects) and Regional government (Prometeo/2017/075) are also acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Physical Chemistry Chemical Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Cyclobutane Pyrimidine dimers | es_ES |
dc.subject | UV-Irradiated DNA | es_ES |
dc.subject | Molecular-Dynamics | es_ES |
dc.subject | Nucleic-Acids | es_ES |
dc.subject | 5-Methyl-2-Pyrimidone Deoxyribonucleoside | es_ES |
dc.subject | Biological consequences | es_ES |
dc.subject | Photodynamic therapy | es_ES |
dc.subject | Charge-Transfer | es_ES |
dc.subject | Singlet oxygen | es_ES |
dc.subject | Cellular-DNA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c8cp04866e | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87054-C2-2-P/ES/FOTOFISICA DE SISTEMAS ORGANICOS DE TRANSFERENCIA DE CARGA INNOVADORES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-70164-P/ES/LESIONES DEL ADN COMO FOTOSENSIBILIZADORES INTRINSECOS - CONCEPTO DE CABALLO DE TROYA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Francés-Monerris, A.; Hognon, C.; Miranda Alonso, MÁ.; Lhiaubet, VL.; Monari, A. (2018). Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment. Physical Chemistry Chemical Physics. 20(40):25666-25675. https://doi.org/10.1039/c8cp04866e | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1039/c8cp04866e | es_ES |
dc.description.upvformatpinicio | 25666 | es_ES |
dc.description.upvformatpfin | 25675 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | es_ES |
dc.description.issue | 40 | es_ES |
dc.identifier.pmid | 30298156 | es_ES |
dc.relation.pasarela | S\379638 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Conseil Régional Grand Est, Francia | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Dumont, E., & Monari, A. (2015). Understanding DNA under oxidative stress and sensitization: the role of molecular modeling. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00043 | es_ES |
dc.description.references | Lomax, M. E., Folkes, L. K., & O’Neill, P. (2013). Biological Consequences of Radiation-induced DNA Damage: Relevance to Radiotherapy. Clinical Oncology, 25(10), 578-585. doi:10.1016/j.clon.2013.06.007 | es_ES |
dc.description.references | Magnander, K., & Elmroth, K. (2012). Biological consequences of formation and repair of complex DNA damage. Cancer Letters, 327(1-2), 90-96. doi:10.1016/j.canlet.2012.02.013 | es_ES |
dc.description.references | Drouin, R., & Therrien, J.-P. (1997). UVB-induced Cyclobutane Pyrimidine Dimer Frequency Correlates with Skin Cancer Mutational Hotspots in p53. Photochemistry and Photobiology, 66(5), 719-726. doi:10.1111/j.1751-1097.1997.tb03213.x | es_ES |
dc.description.references | Huang, X. X., Bernerd, F., & Halliday, G. M. (2009). Ultraviolet A within Sunlight Induces Mutations in the Epidermal Basal Layer of Engineered Human Skin. The American Journal of Pathology, 174(4), 1534-1543. doi:10.2353/ajpath.2009.080318 | es_ES |
dc.description.references | Pfeifer, G. P., You, Y.-H., & Besaratinia, A. (2005). Mutations induced by ultraviolet light. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 19-31. doi:10.1016/j.mrfmmm.2004.06.057 | es_ES |
dc.description.references | Durbeej, B., & Eriksson, L. A. (2003). On the Formation of Cyclobutane Pyrimidine Dimers in UV-irradiated DNA: Why are Thymines More Reactive?¶. Photochemistry and Photobiology, 78(2), 159. doi:10.1562/0031-8655(2003)078<0159:otfocp>2.0.co;2 | es_ES |
dc.description.references | Bucher, D. B., Schlueter, A., Carell, T., & Zinth, W. (2014). Watson-Crick Base Pairing Controls Excited-State Decay in Natural DNA. Angewandte Chemie International Edition, 53(42), 11366-11369. doi:10.1002/anie.201406286 | es_ES |
dc.description.references | Cadet, J., Sage, E., & Douki, T. (2005). Ultraviolet radiation-mediated damage to cellular DNA. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 3-17. doi:10.1016/j.mrfmmm.2004.09.012 | es_ES |
dc.description.references | Sinha, R. P., & Häder, D.-P. (2002). UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences, 1(4), 225-236. doi:10.1039/b201230h | es_ES |
dc.description.references | Cadet, J., & Wagner, J. R. (2013). DNA Base Damage by Reactive Oxygen Species, Oxidizing Agents, and UV Radiation. Cold Spring Harbor Perspectives in Biology, 5(2), a012559-a012559. doi:10.1101/cshperspect.a012559 | es_ES |
dc.description.references | Grollman, A. P., & Moriya, M. (1993). Mutagenesis by 8-oxoguanine: an enemy within. Trends in Genetics, 9(7), 246-249. doi:10.1016/0168-9525(93)90089-z | es_ES |
dc.description.references | Nikitaki, Z., Hellweg, C. E., Georgakilas, A. G., & Ravanat, J.-L. (2015). Stress-induced DNA damage biomarkers: applications and limitations. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00035 | es_ES |
dc.description.references | Dumont, E., Grüber, R., Bignon, E., Morell, C., Moreau, Y., Monari, A., & Ravanat, J.-L. (2015). Probing the reactivity of singlet oxygen with purines. Nucleic Acids Research, 44(1), 56-62. doi:10.1093/nar/gkv1364 | es_ES |
dc.description.references | Cadet, J., Delatour, T., Douki, T., Gasparutto, D., Pouget, J.-P., Ravanat, J.-L., & Sauvaigo, S. (1999). Hydroxyl radicals and DNA base damage. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 424(1-2), 9-21. doi:10.1016/s0027-5107(99)00004-4 | es_ES |
dc.description.references | Bellon, S., Shikazono, N., Cunniffe, S., Lomax, M., & O’Neill, P. (2009). Processing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic. Nucleic Acids Research, 37(13), 4430-4440. doi:10.1093/nar/gkp422 | es_ES |
dc.description.references | Rogstad, D. K., Heo, J., Vaidehi, N., Goddard, W. A., Burdzy, A., & Sowers, L. C. (2004). 5-Formyluracil-Induced Perturbations of DNA Function†. Biochemistry, 43(19), 5688-5697. doi:10.1021/bi030247j | es_ES |
dc.description.references | Epe, B. (2012). DNA damage spectra induced by photosensitization. Photochem. Photobiol. Sci., 11(1), 98-106. doi:10.1039/c1pp05190c | es_ES |
dc.description.references | Cadet, J., Douki, T., & Ravanat, J.-L. (2014). Oxidatively Generated Damage to Cellular DNA by UVB and UVA Radiation,. Photochemistry and Photobiology, 91(1), 140-155. doi:10.1111/php.12368 | es_ES |
dc.description.references | Marazzi, M., Wibowo, M., Gattuso, H., Dumont, E., Roca-Sanjuán, D., & Monari, A. (2016). Hydrogen abstraction by photoexcited benzophenone: consequences for DNA photosensitization. Physical Chemistry Chemical Physics, 18(11), 7829-7836. doi:10.1039/c5cp07938a | es_ES |
dc.description.references | Bignon, E., Marazzi, M., Besancenot, V., Gattuso, H., Drouot, G., Morell, C., … Monari, A. (2017). Ibuprofen and ketoprofen potentiate UVA-induced cell death by a photosensitization process. Scientific Reports, 7(1). doi:10.1038/s41598-017-09406-8 | es_ES |
dc.description.references | Gattuso, H., Dumont, E., Marazzi, M., & Monari, A. (2016). Two-photon-absorption DNA sensitization via solvated electron production: unraveling photochemical pathways by molecular modeling and simulation. Physical Chemistry Chemical Physics, 18(27), 18598-18606. doi:10.1039/c6cp02592g | es_ES |
dc.description.references | Zheng, Y.-C., Zheng, M.-L., Li, K., Chen, S., Zhao, Z.-S., Wang, X.-S., & Duan, X.-M. (2015). Novel carbazole-based two-photon photosensitizer for efficient DNA photocleavage in anaerobic condition using near-infrared light. RSC Advances, 5(1), 770-774. doi:10.1039/c4ra11133h | es_ES |
dc.description.references | Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e | es_ES |
dc.description.references | Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Yamaji, M., Lhiaubet-Vallet, V., Cuquerella, M. C., & Miranda, M. A. (2013). Two-Photon Chemistry from Upper Triplet States of Thymine. Journal of the American Chemical Society, 135(44), 16714-16719. doi:10.1021/ja408997j | es_ES |
dc.description.references | Dumont, E., Wibowo, M., Roca-Sanjuán, D., Garavelli, M., Assfeld, X., & Monari, A. (2015). Resolving the Benzophenone DNA-Photosensitization Mechanism at QM/MM Level. The Journal of Physical Chemistry Letters, 6(4), 576-580. doi:10.1021/jz502562d | es_ES |
dc.description.references | Gattuso, H., Dumont, E., Chipot, C., Monari, A., & Dehez, F. (2016). Thermodynamics of DNA: sensitizer recognition. Characterizing binding motifs with all-atom simulations. Physical Chemistry Chemical Physics, 18(48), 33180-33186. doi:10.1039/c6cp06078a | es_ES |
dc.description.references | Washington, I., Brooks, C., Turro, N. J., & Nakanishi, K. (2004). Porphyrins As Photosensitizers To Enhance Night Vision. Journal of the American Chemical Society, 126(32), 9892-9893. doi:10.1021/ja0486317 | es_ES |
dc.description.references | Wang, K., Poon, C. T., Choi, C. Y., Wong, W.-K., Kwong, D. W. J., Yu, F. Q., … Li, Z. Y. (2012). Synthesis, circular dichroism, DNA cleavage and singlet oxygen photogeneration of 4-amidinophenyl porphyrins. Journal of Porphyrins and Phthalocyanines, 16(01), 85-92. doi:10.1142/s108842461100435x | es_ES |
dc.description.references | Ethirajan, M., Chen, Y., Joshi, P., & Pandey, R. K. (2011). The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev., 40(1), 340-362. doi:10.1039/b915149b | es_ES |
dc.description.references | Nyman, E. S., & Hynninen, P. H. (2004). Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 73(1-2), 1-28. doi:10.1016/j.jphotobiol.2003.10.002 | es_ES |
dc.description.references | Bonnett, R. (1995). Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chemical Society Reviews, 24(1), 19. doi:10.1039/cs9952400019 | es_ES |
dc.description.references | Li, M.-D., Su, T., Ma, J., Liu, M., Liu, H., Li, X., & Phillips, D. L. (2013). Phototriggered Release of a Leaving Group in Ketoprofen Derivatives via a Benzylic Carbanion Pathway, But not via a Biradical Pathway. Chemistry - A European Journal, 19(34), 11241-11250. doi:10.1002/chem.201300285 | es_ES |
dc.description.references | Musa, K. A. K., Matxain, J. M., & Eriksson, L. A. (2007). Mechanism of Photoinduced Decomposition of Ketoprofen. Journal of Medicinal Chemistry, 50(8), 1735-1743. doi:10.1021/jm060697k | es_ES |
dc.description.references | Sánchez-Borges, M., Capriles-Hulett, A., & Caballero-Fonseca, F. (2005). Risk of skin reactions when using ibuprofen-based medicines. Expert Opinion on Drug Safety, 4(5), 837-848. doi:10.1517/14740338.4.5.837 | es_ES |
dc.description.references | Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2009). Photosensitized DNA Damage: The Case of Fluoroquinolones. Photochemistry and Photobiology, 85(4), 861-868. doi:10.1111/j.1751-1097.2009.00548.x | es_ES |
dc.description.references | Colasson, B., Credi, A., & Ragazzon, G. (2016). Light-driven molecular machines based on ruthenium(II) polypyridine complexes: Strategies and recent advances. Coordination Chemistry Reviews, 325, 125-134. doi:10.1016/j.ccr.2016.02.012 | es_ES |
dc.description.references | Véry, T., Ambrosek, D., Otsuka, M., Gourlaouen, C., Assfeld, X., Monari, A., & Daniel, C. (2014). Photophysical Properties of Ruthenium(II) Polypyridyl DNA Intercalators: Effects of the Molecular Surroundings Investigated by Theory. Chemistry - A European Journal, 20(40), 12901-12909. doi:10.1002/chem.201402963 | es_ES |
dc.description.references | Chantzis, A., Very, T., Daniel, C., Monari, A., & Assfeld, X. (2013). Theoretical evidence of photo-induced charge transfer from DNA to intercalated ruthenium (II) organometallic complexes. Chemical Physics Letters, 578, 133-137. doi:10.1016/j.cplett.2013.05.068 | es_ES |
dc.description.references | Daniel, C. (2015). Photochemistry and photophysics of transition metal complexes: Quantum chemistry. Coordination Chemistry Reviews, 282-283, 19-32. doi:10.1016/j.ccr.2014.05.023 | es_ES |
dc.description.references | Ambrosek, D., Loos, P.-F., Assfeld, X., & Daniel, C. (2010). A theoretical study of Ru(II) polypyridyl DNA intercalatorsStructure and electronic absorption spectroscopy of [Ru(phen)2(dppz)]2+ and [Ru(tap)2(dppz)]2+ complexes intercalated in guanine–cytosine base pairs. Journal of Inorganic Biochemistry, 104(9), 893-901. doi:10.1016/j.jinorgbio.2010.04.002 | es_ES |
dc.description.references | Olmon, E. D., Sontz, P. A., Blanco-Rodríguez, A. M., Towrie, M., Clark, I. P., Vlček, A., & Barton, J. K. (2011). Charge Photoinjection in Intercalated and Covalently Bound [Re(CO)3(dppz)(py)]+–DNA Constructs Monitored by Time-Resolved Visible and Infrared Spectroscopy. Journal of the American Chemical Society, 133(34), 13718-13730. doi:10.1021/ja205568r | es_ES |
dc.description.references | Fumanal, M., Vela, S., Gattuso, H., Monari, A., & Daniel, C. (2018). Absorption Spectroscopy and Photophysics of a ReI -dppz Probe for DNA-Mediated Charge Transport. Chemistry - A European Journal, 24(54), 14425-14435. doi:10.1002/chem.201801980 | es_ES |
dc.description.references | Garcia-Lainez, G., Martínez-Reig, A. M., Limones-Herrero, D., Consuelo Jiménez, M., Miranda, M. A., & Andreu, I. (2018). Photo(geno)toxicity changes associated with hydroxylation of the aromatic chromophores during diclofenac metabolism. Toxicology and Applied Pharmacology, 341, 51-55. doi:10.1016/j.taap.2018.01.005 | es_ES |
dc.description.references | Chiarelli-Neto, O., Ferreira, A. S., Martins, W. K., Pavani, C., Severino, D., Faião-Flores, F., … Baptista, M. S. (2014). Melanin Photosensitization and the Effect of Visible Light on Epithelial Cells. PLoS ONE, 9(11), e113266. doi:10.1371/journal.pone.0113266 | es_ES |
dc.description.references | Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Cuquerella, M. C., Lhiaubet-Vallet, V., & Miranda, M. A. (2013). Photosensitization of DNA by 5-Methyl-2-Pyrimidone Deoxyribonucleoside: (6-4) Photoproduct as a Possible Trojan Horse. Angewandte Chemie International Edition, 52(25), 6476-6479. doi:10.1002/anie.201302176 | es_ES |
dc.description.references | Bignon, E., Gattuso, H., Morell, C., Dumont, E., & Monari, A. (2015). DNA Photosensitization by an «Insider»: Photophysics and Triplet Energy Transfer of 5-Methyl-2-pyrimidone Deoxyribonucleoside. Chemistry - A European Journal, 21(32), 11509-11516. doi:10.1002/chem.201501212 | es_ES |
dc.description.references | Dehez, F., Gattuso, H., Bignon, E., Morell, C., Dumont, E., & Monari, A. (2017). Conformational polymorphism or structural invariance in DNA photoinduced lesions: implications for repair rates. Nucleic Acids Research, 45(7), 3654-3662. doi:10.1093/nar/gkx148 | es_ES |
dc.description.references | Aparici-Espert, I., Garcia-Lainez, G., Andreu, I., Miranda, M. A., & Lhiaubet-Vallet, V. (2018). Oxidatively Generated Lesions as Internal Photosensitizers for Pyrimidine Dimerization in DNA. ACS Chemical Biology, 13(3), 542-547. doi:10.1021/acschembio.7b01097 | es_ES |
dc.description.references | Segarra-Martí, J., Francés-Monerris, A., Roca-Sanjuán, D., & Merchán, M. (2016). Assessment of the Potential Energy Hypersurfaces in Thymine within Multiconfigurational Theory: CASSCF vs. CASPT2. Molecules, 21(12), 1666. doi:10.3390/molecules21121666 | es_ES |
dc.description.references | Olaso-González, G., Roca-Sanjuán, D., Serrano-Andrés, L., & Merchán, M. (2006). Toward the understanding of DNA fluorescence: The singlet excimer of cytosine. The Journal of Chemical Physics, 125(23), 231102. doi:10.1063/1.2408411 | es_ES |
dc.description.references | Roca-Sanjuán, D., Olaso-González, G., González-Ramírez, I., Serrano-Andrés, L., & Merchán, M. (2008). Molecular Basis of DNA Photodimerization: Intrinsic Production of Cyclobutane Cytosine Dimers. Journal of the American Chemical Society, 130(32), 10768-10779. doi:10.1021/ja803068n | es_ES |
dc.description.references | Climent, T., González-Ramírez, I., González-Luque, R., Merchán, M., & Serrano-Andrés, L. (2010). Cyclobutane Pyrimidine Photodimerization of DNA/RNA Nucleobases in the Triplet State. The Journal of Physical Chemistry Letters, 1(14), 2072-2076. doi:10.1021/jz100601p | es_ES |
dc.description.references | Aquilante, F., Autschbach, J., Carlson, R. K., Chibotaru, L. F., Delcey, M. G., De Vico, L., … Lindh, R. (2015). Molcas8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. Journal of Computational Chemistry, 37(5), 506-541. doi:10.1002/jcc.24221 | es_ES |
dc.description.references | Hirata, S., & Head-Gordon, M. (1999). Time-dependent density functional theory within the Tamm–Dancoff approximation. Chemical Physics Letters, 314(3-4), 291-299. doi:10.1016/s0009-2614(99)01149-5 | es_ES |
dc.description.references | Martin, R. L. (2003). Natural transition orbitals. The Journal of Chemical Physics, 118(11), 4775-4777. doi:10.1063/1.1558471 | es_ES |
dc.description.references | Etienne, T., Assfeld, X., & Monari, A. (2014). Toward a Quantitative Assessment of Electronic Transitions’ Charge-Transfer Character. Journal of Chemical Theory and Computation, 10(9), 3896-3905. doi:10.1021/ct5003994 | es_ES |
dc.description.references | Etienne, T., Assfeld, X., & Monari, A. (2014). New Insight into the Topology of Excited States through Detachment/Attachment Density Matrices-Based Centroids of Charge. Journal of Chemical Theory and Computation, 10(9), 3906-3914. doi:10.1021/ct500400s | es_ES |
dc.description.references | González-Ramírez, I., Roca-Sanjuán, D., Climent, T., Serrano-Pérez, J. J., Merchán, M., & Serrano-Andrés, L. (2010). On the photoproduction of DNA/RNA cyclobutane pyrimidine dimers. Theoretical Chemistry Accounts, 128(4-6), 705-711. doi:10.1007/s00214-010-0854-z | es_ES |
dc.description.references | Serrano-Pérez, J. J., González-Ramírez, I., Coto, P. B., Merchán, M., & Serrano-Andrés, L. (2008). Theoretical Insight into the Intrinsic Ultrafast Formation of Cyclobutane Pyrimidine Dimers in UV-Irradiated DNA: Thymine versus Cytosine. The Journal of Physical Chemistry B, 112(45), 14096-14098. doi:10.1021/jp806794x | es_ES |
dc.description.references | Malmqvist, P. Å., Roos, B. O., & Schimmelpfennig, B. (2002). The restricted active space (RAS) state interaction approach with spin–orbit coupling. Chemical Physics Letters, 357(3-4), 230-240. doi:10.1016/s0009-2614(02)00498-0 | es_ES |
dc.description.references | Roos, B. O., & Malmqvist, P.-�ke. (2004). Relativistic quantum chemistry: the multiconfigurational approach. Physical Chemistry Chemical Physics, 6(11), 2919. doi:10.1039/b401472n | es_ES |
dc.description.references | Heß, B. A., Marian, C. M., Wahlgren, U., & Gropen, O. (1996). A mean-field spin-orbit method applicable to correlated wavefunctions. Chemical Physics Letters, 251(5-6), 365-371. doi:10.1016/0009-2614(96)00119-4 | es_ES |
dc.description.references | Christiansen, O., Gauss, J., & Schimmelpfennig, B. (2000). Spin-orbit coupling constants from coupled-cluster response theory. Physical Chemistry Chemical Physics, 2(5), 965-971. doi:10.1039/a908995k | es_ES |
dc.description.references | Francés-Monerris, A., Segarra-Martí, J., Merchán, M., & Roca-Sanjuán, D. (2016). Theoretical study on the excited-state π-stacking versus intermolecular hydrogen-transfer processes in the guanine–cytosine/cytosine trimer. Theoretical Chemistry Accounts, 135(2). doi:10.1007/s00214-015-1762-z | es_ES |
dc.description.references | Londesborough, M. G. S., Dolanský, J., Jelínek, T., Kennedy, J. D., Císařová, I., Kennedy, R. D., … Clegg, W. (2018). Substitution of the laser borane anti-B18H22 with pyridine: a structural and photophysical study of some unusually structured macropolyhedral boron hydrides. Dalton Transactions, 47(5), 1709-1725. doi:10.1039/c7dt03823b | es_ES |
dc.description.references | Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., … Kollman, P. A. (1995). A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. Journal of the American Chemical Society, 117(19), 5179-5197. doi:10.1021/ja00124a002 | es_ES |
dc.description.references | Wang, J., Cieplak, P., & Kollman, P. A. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry, 21(12), 1049-1074. doi:10.1002/1096-987x(200009)21:12<1049::aid-jcc3>3.0.co;2-f | es_ES |
dc.description.references | Hopkins, C. W., Le Grand, S., Walker, R. C., & Roitberg, A. E. (2015). Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. Journal of Chemical Theory and Computation, 11(4), 1864-1874. doi:10.1021/ct5010406 | es_ES |
dc.description.references | Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781-1802. doi:10.1002/jcc.20289 | es_ES |
dc.description.references | Lavery, R., Moakher, M., Maddocks, J. H., Petkeviciute, D., & Zakrzewska, K. (2009). Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Research, 37(17), 5917-5929. doi:10.1093/nar/gkp608 | es_ES |
dc.description.references | Götz, A. W., Clark, M. A., & Walker, R. C. (2013). An extensible interface for QM/MM molecular dynamics simulations with AMBER. Journal of Computational Chemistry, 35(2), 95-108. doi:10.1002/jcc.23444 | es_ES |
dc.description.references | Giussani, A., Segarra-Martí, J., Roca-Sanjuán, D., & Merchán, M. (2013). Excitation of Nucleobases from a Computational Perspective I: Reaction Paths. Photoinduced Phenomena in Nucleic Acids I, 57-97. doi:10.1007/128_2013_501 | es_ES |
dc.description.references | Improta, R., Santoro, F., & Blancafort, L. (2016). Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chemical Reviews, 116(6), 3540-3593. doi:10.1021/acs.chemrev.5b00444 | es_ES |
dc.description.references | Matsika, S. (2014). Modified Nucleobases. Photoinduced Phenomena in Nucleic Acids I, 209-243. doi:10.1007/128_2014_532 | es_ES |
dc.description.references | Borin, A. C. (2018). Light and nucleobases: A good interaction for everybody. Journal of Luminescence, 198, 433-437. doi:10.1016/j.jlumin.2018.02.066 | es_ES |
dc.description.references | Conti, I., & Garavelli, M. (2018). Evolution of the Excitonic State of DNA Stacked Thymines: Intrabase ππ* → S0 Decay Paths Account for Ultrafast (Subpicosecond) and Longer (>100 ps) Deactivations. The Journal of Physical Chemistry Letters, 9(9), 2373-2379. doi:10.1021/acs.jpclett.8b00698 | es_ES |
dc.description.references | El-Sayed, M. A. (1968). Triplet state. Its radiative and nonradiative properties. Accounts of Chemical Research, 1(1), 8-16. doi:10.1021/ar50001a002 | es_ES |
dc.description.references | Privat, E. (1996). A proposed mechanism for the mutagenicity of 5-formyluracil. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 354(2), 151-156. doi:10.1016/0027-5107(96)00005-x | es_ES |