- -

Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Francés-Monerris, Antonio es_ES
dc.contributor.author Hognon, Cécilia es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Lhiaubet, Virginie Lyria es_ES
dc.contributor.author Monari, Antonio es_ES
dc.date.accessioned 2020-06-03T05:53:24Z
dc.date.available 2020-06-03T05:53:24Z
dc.date.issued 2018-10-28 es_ES
dc.identifier.issn 1463-9076 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145122
dc.description.abstract [EN] Nucleic acids are constantly exposed to external agents that can induce chemical and photochemical damage. In spite of the great advances achieved in the last years, some molecular mechanisms of DNA damage are not completely understood yet. A recent experimental report (I. Aparici-Espert et al., ACS Chem. Biol. 2018, 13, 542) proved the ability of 5-formyluracil (ForU), a common oxidatively generated product of thymine, to act as an intrinsic sensitizer of nucleic acids, causing single strand breaks and cyclobutane pyrimidine dimers in plasmid DNA. In the present contribution, we use theoretical methodologies to study the triplet photosensitization mechanism of thymine exerted by ForU in a model dimer and in DNA environment. The photochemical pathways in the former system are described combining the CASPT2 and TD-DFT methods, whereas molecular dynamics simulations and QM/MM calculations are employed for the DNA duplex. It is unambiguously shown that the (1)n,* state localised in ForU mediates the population of the triplet manifold, most likely the (3),* state centred in ForU, whereas the (3),* state localized in thymine can be populated via triplet-triplet energy transfer given the small energy barrier of <0.23 eV determined for this pathway. es_ES
dc.description.sponsorship A. F. M. is grateful to Région Grand Est government (France) for the financial support. Spanish government (CTQ2015-70164P and CTQ2017-87054-C2-2-P projects) and Regional government (Prometeo/2017/075) are also acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cyclobutane Pyrimidine dimers es_ES
dc.subject UV-Irradiated DNA es_ES
dc.subject Molecular-Dynamics es_ES
dc.subject Nucleic-Acids es_ES
dc.subject 5-Methyl-2-Pyrimidone Deoxyribonucleoside es_ES
dc.subject Biological consequences es_ES
dc.subject Photodynamic therapy es_ES
dc.subject Charge-Transfer es_ES
dc.subject Singlet oxygen es_ES
dc.subject Cellular-DNA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8cp04866e es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87054-C2-2-P/ES/FOTOFISICA DE SISTEMAS ORGANICOS DE TRANSFERENCIA DE CARGA INNOVADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-70164-P/ES/LESIONES DEL ADN COMO FOTOSENSIBILIZADORES INTRINSECOS - CONCEPTO DE CABALLO DE TROYA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F075/ES/Reacciones fotoquímicas de biomoléculas/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Francés-Monerris, A.; Hognon, C.; Miranda Alonso, MÁ.; Lhiaubet, VL.; Monari, A. (2018). Triplet photosensitization mechanism of thymine by an oxidized nucleobase: from a dimeric model to DNA environment. Physical Chemistry Chemical Physics. 20(40):25666-25675. https://doi.org/10.1039/c8cp04866e es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1039/c8cp04866e es_ES
dc.description.upvformatpinicio 25666 es_ES
dc.description.upvformatpfin 25675 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 40 es_ES
dc.identifier.pmid 30298156 es_ES
dc.relation.pasarela S\379638 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Conseil Régional Grand Est, Francia es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Dumont, E., & Monari, A. (2015). Understanding DNA under oxidative stress and sensitization: the role of molecular modeling. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00043 es_ES
dc.description.references Lomax, M. E., Folkes, L. K., & O’Neill, P. (2013). Biological Consequences of Radiation-induced DNA Damage: Relevance to Radiotherapy. Clinical Oncology, 25(10), 578-585. doi:10.1016/j.clon.2013.06.007 es_ES
dc.description.references Magnander, K., & Elmroth, K. (2012). Biological consequences of formation and repair of complex DNA damage. Cancer Letters, 327(1-2), 90-96. doi:10.1016/j.canlet.2012.02.013 es_ES
dc.description.references Drouin, R., & Therrien, J.-P. (1997). UVB-induced Cyclobutane Pyrimidine Dimer Frequency Correlates with Skin Cancer Mutational Hotspots in p53. Photochemistry and Photobiology, 66(5), 719-726. doi:10.1111/j.1751-1097.1997.tb03213.x es_ES
dc.description.references Huang, X. X., Bernerd, F., & Halliday, G. M. (2009). Ultraviolet A within Sunlight Induces Mutations in the Epidermal Basal Layer of Engineered Human Skin. The American Journal of Pathology, 174(4), 1534-1543. doi:10.2353/ajpath.2009.080318 es_ES
dc.description.references Pfeifer, G. P., You, Y.-H., & Besaratinia, A. (2005). Mutations induced by ultraviolet light. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 19-31. doi:10.1016/j.mrfmmm.2004.06.057 es_ES
dc.description.references Durbeej, B., & Eriksson, L. A. (2003). On the Formation of Cyclobutane Pyrimidine Dimers in UV-irradiated DNA: Why are Thymines More Reactive?¶. Photochemistry and Photobiology, 78(2), 159. doi:10.1562/0031-8655(2003)078<0159:otfocp>2.0.co;2 es_ES
dc.description.references Bucher, D. B., Schlueter, A., Carell, T., & Zinth, W. (2014). Watson-Crick Base Pairing Controls Excited-State Decay in Natural DNA. Angewandte Chemie International Edition, 53(42), 11366-11369. doi:10.1002/anie.201406286 es_ES
dc.description.references Cadet, J., Sage, E., & Douki, T. (2005). Ultraviolet radiation-mediated damage to cellular DNA. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571(1-2), 3-17. doi:10.1016/j.mrfmmm.2004.09.012 es_ES
dc.description.references Sinha, R. P., & Häder, D.-P. (2002). UV-induced DNA damage and repair: a review. Photochemical & Photobiological Sciences, 1(4), 225-236. doi:10.1039/b201230h es_ES
dc.description.references Cadet, J., & Wagner, J. R. (2013). DNA Base Damage by Reactive Oxygen Species, Oxidizing Agents, and UV Radiation. Cold Spring Harbor Perspectives in Biology, 5(2), a012559-a012559. doi:10.1101/cshperspect.a012559 es_ES
dc.description.references Grollman, A. P., & Moriya, M. (1993). Mutagenesis by 8-oxoguanine: an enemy within. Trends in Genetics, 9(7), 246-249. doi:10.1016/0168-9525(93)90089-z es_ES
dc.description.references Nikitaki, Z., Hellweg, C. E., Georgakilas, A. G., & Ravanat, J.-L. (2015). Stress-induced DNA damage biomarkers: applications and limitations. Frontiers in Chemistry, 3. doi:10.3389/fchem.2015.00035 es_ES
dc.description.references Dumont, E., Grüber, R., Bignon, E., Morell, C., Moreau, Y., Monari, A., & Ravanat, J.-L. (2015). Probing the reactivity of singlet oxygen with purines. Nucleic Acids Research, 44(1), 56-62. doi:10.1093/nar/gkv1364 es_ES
dc.description.references Cadet, J., Delatour, T., Douki, T., Gasparutto, D., Pouget, J.-P., Ravanat, J.-L., & Sauvaigo, S. (1999). Hydroxyl radicals and DNA base damage. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 424(1-2), 9-21. doi:10.1016/s0027-5107(99)00004-4 es_ES
dc.description.references Bellon, S., Shikazono, N., Cunniffe, S., Lomax, M., & O’Neill, P. (2009). Processing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic. Nucleic Acids Research, 37(13), 4430-4440. doi:10.1093/nar/gkp422 es_ES
dc.description.references Rogstad, D. K., Heo, J., Vaidehi, N., Goddard, W. A., Burdzy, A., & Sowers, L. C. (2004). 5-Formyluracil-Induced Perturbations of DNA Function†. Biochemistry, 43(19), 5688-5697. doi:10.1021/bi030247j es_ES
dc.description.references Epe, B. (2012). DNA damage spectra induced by photosensitization. Photochem. Photobiol. Sci., 11(1), 98-106. doi:10.1039/c1pp05190c es_ES
dc.description.references Cadet, J., Douki, T., & Ravanat, J.-L. (2014). Oxidatively Generated Damage to Cellular DNA by UVB and UVA Radiation,. Photochemistry and Photobiology, 91(1), 140-155. doi:10.1111/php.12368 es_ES
dc.description.references Marazzi, M., Wibowo, M., Gattuso, H., Dumont, E., Roca-Sanjuán, D., & Monari, A. (2016). Hydrogen abstraction by photoexcited benzophenone: consequences for DNA photosensitization. Physical Chemistry Chemical Physics, 18(11), 7829-7836. doi:10.1039/c5cp07938a es_ES
dc.description.references Bignon, E., Marazzi, M., Besancenot, V., Gattuso, H., Drouot, G., Morell, C., … Monari, A. (2017). Ibuprofen and ketoprofen potentiate UVA-induced cell death by a photosensitization process. Scientific Reports, 7(1). doi:10.1038/s41598-017-09406-8 es_ES
dc.description.references Gattuso, H., Dumont, E., Marazzi, M., & Monari, A. (2016). Two-photon-absorption DNA sensitization via solvated electron production: unraveling photochemical pathways by molecular modeling and simulation. Physical Chemistry Chemical Physics, 18(27), 18598-18606. doi:10.1039/c6cp02592g es_ES
dc.description.references Zheng, Y.-C., Zheng, M.-L., Li, K., Chen, S., Zhao, Z.-S., Wang, X.-S., & Duan, X.-M. (2015). Novel carbazole-based two-photon photosensitizer for efficient DNA photocleavage in anaerobic condition using near-infrared light. RSC Advances, 5(1), 770-774. doi:10.1039/c4ra11133h es_ES
dc.description.references Cuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054e es_ES
dc.description.references Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Yamaji, M., Lhiaubet-Vallet, V., Cuquerella, M. C., & Miranda, M. A. (2013). Two-Photon Chemistry from Upper Triplet States of Thymine. Journal of the American Chemical Society, 135(44), 16714-16719. doi:10.1021/ja408997j es_ES
dc.description.references Dumont, E., Wibowo, M., Roca-Sanjuán, D., Garavelli, M., Assfeld, X., & Monari, A. (2015). Resolving the Benzophenone DNA-Photosensitization Mechanism at QM/MM Level. The Journal of Physical Chemistry Letters, 6(4), 576-580. doi:10.1021/jz502562d es_ES
dc.description.references Gattuso, H., Dumont, E., Chipot, C., Monari, A., & Dehez, F. (2016). Thermodynamics of DNA: sensitizer recognition. Characterizing binding motifs with all-atom simulations. Physical Chemistry Chemical Physics, 18(48), 33180-33186. doi:10.1039/c6cp06078a es_ES
dc.description.references Washington, I., Brooks, C., Turro, N. J., & Nakanishi, K. (2004). Porphyrins As Photosensitizers To Enhance Night Vision. Journal of the American Chemical Society, 126(32), 9892-9893. doi:10.1021/ja0486317 es_ES
dc.description.references Wang, K., Poon, C. T., Choi, C. Y., Wong, W.-K., Kwong, D. W. J., Yu, F. Q., … Li, Z. Y. (2012). Synthesis, circular dichroism, DNA cleavage and singlet oxygen photogeneration of 4-amidinophenyl porphyrins. Journal of Porphyrins and Phthalocyanines, 16(01), 85-92. doi:10.1142/s108842461100435x es_ES
dc.description.references Ethirajan, M., Chen, Y., Joshi, P., & Pandey, R. K. (2011). The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev., 40(1), 340-362. doi:10.1039/b915149b es_ES
dc.description.references Nyman, E. S., & Hynninen, P. H. (2004). Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 73(1-2), 1-28. doi:10.1016/j.jphotobiol.2003.10.002 es_ES
dc.description.references Bonnett, R. (1995). Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chemical Society Reviews, 24(1), 19. doi:10.1039/cs9952400019 es_ES
dc.description.references Li, M.-D., Su, T., Ma, J., Liu, M., Liu, H., Li, X., & Phillips, D. L. (2013). Phototriggered Release of a Leaving Group in Ketoprofen Derivatives via a Benzylic Carbanion Pathway, But not via a Biradical Pathway. Chemistry - A European Journal, 19(34), 11241-11250. doi:10.1002/chem.201300285 es_ES
dc.description.references Musa, K. A. K., Matxain, J. M., & Eriksson, L. A. (2007). Mechanism of Photoinduced Decomposition of Ketoprofen. Journal of Medicinal Chemistry, 50(8), 1735-1743. doi:10.1021/jm060697k es_ES
dc.description.references Sánchez-Borges, M., Capriles-Hulett, A., & Caballero-Fonseca, F. (2005). Risk of skin reactions when using ibuprofen-based medicines. Expert Opinion on Drug Safety, 4(5), 837-848. doi:10.1517/14740338.4.5.837 es_ES
dc.description.references Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2009). Photosensitized DNA Damage: The Case of Fluoroquinolones. Photochemistry and Photobiology, 85(4), 861-868. doi:10.1111/j.1751-1097.2009.00548.x es_ES
dc.description.references Colasson, B., Credi, A., & Ragazzon, G. (2016). Light-driven molecular machines based on ruthenium(II) polypyridine complexes: Strategies and recent advances. Coordination Chemistry Reviews, 325, 125-134. doi:10.1016/j.ccr.2016.02.012 es_ES
dc.description.references Véry, T., Ambrosek, D., Otsuka, M., Gourlaouen, C., Assfeld, X., Monari, A., & Daniel, C. (2014). Photophysical Properties of Ruthenium(II) Polypyridyl DNA Intercalators: Effects of the Molecular Surroundings Investigated by Theory. Chemistry - A European Journal, 20(40), 12901-12909. doi:10.1002/chem.201402963 es_ES
dc.description.references Chantzis, A., Very, T., Daniel, C., Monari, A., & Assfeld, X. (2013). Theoretical evidence of photo-induced charge transfer from DNA to intercalated ruthenium (II) organometallic complexes. Chemical Physics Letters, 578, 133-137. doi:10.1016/j.cplett.2013.05.068 es_ES
dc.description.references Daniel, C. (2015). Photochemistry and photophysics of transition metal complexes: Quantum chemistry. Coordination Chemistry Reviews, 282-283, 19-32. doi:10.1016/j.ccr.2014.05.023 es_ES
dc.description.references Ambrosek, D., Loos, P.-F., Assfeld, X., & Daniel, C. (2010). A theoretical study of Ru(II) polypyridyl DNA intercalatorsStructure and electronic absorption spectroscopy of [Ru(phen)2(dppz)]2+ and [Ru(tap)2(dppz)]2+ complexes intercalated in guanine–cytosine base pairs. Journal of Inorganic Biochemistry, 104(9), 893-901. doi:10.1016/j.jinorgbio.2010.04.002 es_ES
dc.description.references Olmon, E. D., Sontz, P. A., Blanco-Rodríguez, A. M., Towrie, M., Clark, I. P., Vlček, A., & Barton, J. K. (2011). Charge Photoinjection in Intercalated and Covalently Bound [Re(CO)3(dppz)(py)]+–DNA Constructs Monitored by Time-Resolved Visible and Infrared Spectroscopy. Journal of the American Chemical Society, 133(34), 13718-13730. doi:10.1021/ja205568r es_ES
dc.description.references Fumanal, M., Vela, S., Gattuso, H., Monari, A., & Daniel, C. (2018). Absorption Spectroscopy and Photophysics of a ReI -dppz Probe for DNA-Mediated Charge Transport. Chemistry - A European Journal, 24(54), 14425-14435. doi:10.1002/chem.201801980 es_ES
dc.description.references Garcia-Lainez, G., Martínez-Reig, A. M., Limones-Herrero, D., Consuelo Jiménez, M., Miranda, M. A., & Andreu, I. (2018). Photo(geno)toxicity changes associated with hydroxylation of the aromatic chromophores during diclofenac metabolism. Toxicology and Applied Pharmacology, 341, 51-55. doi:10.1016/j.taap.2018.01.005 es_ES
dc.description.references Chiarelli-Neto, O., Ferreira, A. S., Martins, W. K., Pavani, C., Severino, D., Faião-Flores, F., … Baptista, M. S. (2014). Melanin Photosensitization and the Effect of Visible Light on Epithelial Cells. PLoS ONE, 9(11), e113266. doi:10.1371/journal.pone.0113266 es_ES
dc.description.references Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Cuquerella, M. C., Lhiaubet-Vallet, V., & Miranda, M. A. (2013). Photosensitization of DNA by 5-Methyl-2-Pyrimidone Deoxyribonucleoside: (6-4) Photoproduct as a Possible Trojan Horse. Angewandte Chemie International Edition, 52(25), 6476-6479. doi:10.1002/anie.201302176 es_ES
dc.description.references Bignon, E., Gattuso, H., Morell, C., Dumont, E., & Monari, A. (2015). DNA Photosensitization by an «Insider»: Photophysics and Triplet Energy Transfer of 5-Methyl-2-pyrimidone Deoxyribonucleoside. Chemistry - A European Journal, 21(32), 11509-11516. doi:10.1002/chem.201501212 es_ES
dc.description.references Dehez, F., Gattuso, H., Bignon, E., Morell, C., Dumont, E., & Monari, A. (2017). Conformational polymorphism or structural invariance in DNA photoinduced lesions: implications for repair rates. Nucleic Acids Research, 45(7), 3654-3662. doi:10.1093/nar/gkx148 es_ES
dc.description.references Aparici-Espert, I., Garcia-Lainez, G., Andreu, I., Miranda, M. A., & Lhiaubet-Vallet, V. (2018). Oxidatively Generated Lesions as Internal Photosensitizers for Pyrimidine Dimerization in DNA. ACS Chemical Biology, 13(3), 542-547. doi:10.1021/acschembio.7b01097 es_ES
dc.description.references Segarra-Martí, J., Francés-Monerris, A., Roca-Sanjuán, D., & Merchán, M. (2016). Assessment of the Potential Energy Hypersurfaces in Thymine within Multiconfigurational Theory: CASSCF vs. CASPT2. Molecules, 21(12), 1666. doi:10.3390/molecules21121666 es_ES
dc.description.references Olaso-González, G., Roca-Sanjuán, D., Serrano-Andrés, L., & Merchán, M. (2006). Toward the understanding of DNA fluorescence: The singlet excimer of cytosine. The Journal of Chemical Physics, 125(23), 231102. doi:10.1063/1.2408411 es_ES
dc.description.references Roca-Sanjuán, D., Olaso-González, G., González-Ramírez, I., Serrano-Andrés, L., & Merchán, M. (2008). Molecular Basis of DNA Photodimerization: Intrinsic Production of Cyclobutane Cytosine Dimers. Journal of the American Chemical Society, 130(32), 10768-10779. doi:10.1021/ja803068n es_ES
dc.description.references Climent, T., González-Ramírez, I., González-Luque, R., Merchán, M., & Serrano-Andrés, L. (2010). Cyclobutane Pyrimidine Photodimerization of DNA/RNA Nucleobases in the Triplet State. The Journal of Physical Chemistry Letters, 1(14), 2072-2076. doi:10.1021/jz100601p es_ES
dc.description.references Aquilante, F., Autschbach, J., Carlson, R. K., Chibotaru, L. F., Delcey, M. G., De Vico, L., … Lindh, R. (2015). Molcas8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table. Journal of Computational Chemistry, 37(5), 506-541. doi:10.1002/jcc.24221 es_ES
dc.description.references Hirata, S., & Head-Gordon, M. (1999). Time-dependent density functional theory within the Tamm–Dancoff approximation. Chemical Physics Letters, 314(3-4), 291-299. doi:10.1016/s0009-2614(99)01149-5 es_ES
dc.description.references Martin, R. L. (2003). Natural transition orbitals. The Journal of Chemical Physics, 118(11), 4775-4777. doi:10.1063/1.1558471 es_ES
dc.description.references Etienne, T., Assfeld, X., & Monari, A. (2014). Toward a Quantitative Assessment of Electronic Transitions’ Charge-Transfer Character. Journal of Chemical Theory and Computation, 10(9), 3896-3905. doi:10.1021/ct5003994 es_ES
dc.description.references Etienne, T., Assfeld, X., & Monari, A. (2014). New Insight into the Topology of Excited States through Detachment/Attachment Density Matrices-Based Centroids of Charge. Journal of Chemical Theory and Computation, 10(9), 3906-3914. doi:10.1021/ct500400s es_ES
dc.description.references González-Ramírez, I., Roca-Sanjuán, D., Climent, T., Serrano-Pérez, J. J., Merchán, M., & Serrano-Andrés, L. (2010). On the photoproduction of DNA/RNA cyclobutane pyrimidine dimers. Theoretical Chemistry Accounts, 128(4-6), 705-711. doi:10.1007/s00214-010-0854-z es_ES
dc.description.references Serrano-Pérez, J. J., González-Ramírez, I., Coto, P. B., Merchán, M., & Serrano-Andrés, L. (2008). Theoretical Insight into the Intrinsic Ultrafast Formation of Cyclobutane Pyrimidine Dimers in UV-Irradiated DNA: Thymine versus Cytosine. The Journal of Physical Chemistry B, 112(45), 14096-14098. doi:10.1021/jp806794x es_ES
dc.description.references Malmqvist, P. Å., Roos, B. O., & Schimmelpfennig, B. (2002). The restricted active space (RAS) state interaction approach with spin–orbit coupling. Chemical Physics Letters, 357(3-4), 230-240. doi:10.1016/s0009-2614(02)00498-0 es_ES
dc.description.references Roos, B. O., & Malmqvist, P.-�ke. (2004). Relativistic quantum chemistry: the multiconfigurational approach. Physical Chemistry Chemical Physics, 6(11), 2919. doi:10.1039/b401472n es_ES
dc.description.references Heß, B. A., Marian, C. M., Wahlgren, U., & Gropen, O. (1996). A mean-field spin-orbit method applicable to correlated wavefunctions. Chemical Physics Letters, 251(5-6), 365-371. doi:10.1016/0009-2614(96)00119-4 es_ES
dc.description.references Christiansen, O., Gauss, J., & Schimmelpfennig, B. (2000). Spin-orbit coupling constants from coupled-cluster response theory. Physical Chemistry Chemical Physics, 2(5), 965-971. doi:10.1039/a908995k es_ES
dc.description.references Francés-Monerris, A., Segarra-Martí, J., Merchán, M., & Roca-Sanjuán, D. (2016). Theoretical study on the excited-state π-stacking versus intermolecular hydrogen-transfer processes in the guanine–cytosine/cytosine trimer. Theoretical Chemistry Accounts, 135(2). doi:10.1007/s00214-015-1762-z es_ES
dc.description.references Londesborough, M. G. S., Dolanský, J., Jelínek, T., Kennedy, J. D., Císařová, I., Kennedy, R. D., … Clegg, W. (2018). Substitution of the laser borane anti-B18H22 with pyridine: a structural and photophysical study of some unusually structured macropolyhedral boron hydrides. Dalton Transactions, 47(5), 1709-1725. doi:10.1039/c7dt03823b es_ES
dc.description.references Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., … Kollman, P. A. (1995). A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. Journal of the American Chemical Society, 117(19), 5179-5197. doi:10.1021/ja00124a002 es_ES
dc.description.references Wang, J., Cieplak, P., & Kollman, P. A. (2000). How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? Journal of Computational Chemistry, 21(12), 1049-1074. doi:10.1002/1096-987x(200009)21:12<1049::aid-jcc3>3.0.co;2-f es_ES
dc.description.references Hopkins, C. W., Le Grand, S., Walker, R. C., & Roitberg, A. E. (2015). Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. Journal of Chemical Theory and Computation, 11(4), 1864-1874. doi:10.1021/ct5010406 es_ES
dc.description.references Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., … Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781-1802. doi:10.1002/jcc.20289 es_ES
dc.description.references Lavery, R., Moakher, M., Maddocks, J. H., Petkeviciute, D., & Zakrzewska, K. (2009). Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Research, 37(17), 5917-5929. doi:10.1093/nar/gkp608 es_ES
dc.description.references Götz, A. W., Clark, M. A., & Walker, R. C. (2013). An extensible interface for QM/MM molecular dynamics simulations with AMBER. Journal of Computational Chemistry, 35(2), 95-108. doi:10.1002/jcc.23444 es_ES
dc.description.references Giussani, A., Segarra-Martí, J., Roca-Sanjuán, D., & Merchán, M. (2013). Excitation of Nucleobases from a Computational Perspective I: Reaction Paths. Photoinduced Phenomena in Nucleic Acids I, 57-97. doi:10.1007/128_2013_501 es_ES
dc.description.references Improta, R., Santoro, F., & Blancafort, L. (2016). Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chemical Reviews, 116(6), 3540-3593. doi:10.1021/acs.chemrev.5b00444 es_ES
dc.description.references Matsika, S. (2014). Modified Nucleobases. Photoinduced Phenomena in Nucleic Acids I, 209-243. doi:10.1007/128_2014_532 es_ES
dc.description.references Borin, A. C. (2018). Light and nucleobases: A good interaction for everybody. Journal of Luminescence, 198, 433-437. doi:10.1016/j.jlumin.2018.02.066 es_ES
dc.description.references Conti, I., & Garavelli, M. (2018). Evolution of the Excitonic State of DNA Stacked Thymines: Intrabase ππ* → S0 Decay Paths Account for Ultrafast (Subpicosecond) and Longer (>100 ps) Deactivations. The Journal of Physical Chemistry Letters, 9(9), 2373-2379. doi:10.1021/acs.jpclett.8b00698 es_ES
dc.description.references El-Sayed, M. A. (1968). Triplet state. Its radiative and nonradiative properties. Accounts of Chemical Research, 1(1), 8-16. doi:10.1021/ar50001a002 es_ES
dc.description.references Privat, E. (1996). A proposed mechanism for the mutagenicity of 5-formyluracil. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 354(2), 151-156. doi:10.1016/0027-5107(96)00005-x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem