Mostrar el registro sencillo del ítem
dc.contributor.author | Gutiérrez-Tarriño, Silvia | es_ES |
dc.contributor.author | Concepción Heydorn, Patricia | es_ES |
dc.contributor.author | Oña-Burgos, Pascual | es_ES |
dc.date.accessioned | 2020-06-04T06:30:29Z | |
dc.date.available | 2020-06-04T06:30:29Z | |
dc.date.issued | 2018-12-06 | es_ES |
dc.identifier.issn | 1434-1948 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/145196 | |
dc.description.abstract | [EN] Alkene hydrosilylation is typically performed with Pt catalysts, but inexpensive base-metal catalysts would be preferred. Here, we report a simple method for the use of air-stable cobalt catalysts for anti-Markovnikov alkene hydrosilylation that can be used under aerobic conditions without dry solvents or additives. These catalysts can be generated from low-cost commercially available materials. In addition, these catalysts possess good catalytic ability for both hydrosilanes and hydroalkoxysilanes. Finally, a mechanistic study demonstrates that the silane and the catalyst generate a Co-H species in the course of the reaction, which has been observed by in situ Raman spectroscopy. | es_ES |
dc.description.sponsorship | Program Severo Ochoa SEV-2016-0683 is gratefully acknowledged. S. G. T. and P. O.-B. thank MINECO for a FPU Ph.D. fellowship FPU16/02117 and a Ramon y Cajal contract RYC-2014-16620, respectively. Authors would like to thank Prof. Avelino Corma for discussion on the work and support. Authors would like to thank Ms. Adelina Munoz, Dr. Alejandro Vidal, and Ms. Carmen Clemente for the Raman, EPR, and ESI-MS measurements, respectively. Authors are also grateful for the use of analytical facilities at the X-ray Unit of RIAIDT (Universidad de Santiago de Compostela). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | European Journal of Inorganic Chemistry | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Homogeneous catalysis | es_ES |
dc.subject | Cobalt | es_ES |
dc.subject | Alkenes | es_ES |
dc.subject | Hydrosilylation | es_ES |
dc.subject | Reaction mechanisms | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.title | Cobalt Catalysts for Alkene Hydrosilylation under Aerobic Conditions without Dry Solvents or Additives | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/ejic.201801068 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU16%2F02117/ES/FPU16%2F02117/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RYC-2014-16620/ES/RYC-2014-16620/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Gutiérrez-Tarriño, S.; Concepción Heydorn, P.; Oña-Burgos, P. (2018). Cobalt Catalysts for Alkene Hydrosilylation under Aerobic Conditions without Dry Solvents or Additives. European Journal of Inorganic Chemistry. 45:4867-4874. https://doi.org/10.1002/ejic.201801068 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/ejic.201801068 | es_ES |
dc.description.upvformatpinicio | 4867 | es_ES |
dc.description.upvformatpfin | 4874 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 45 | es_ES |
dc.relation.pasarela | S\373666 | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Marciniec, B. (s. f.). Hydrosilylation of Alkenes and Their Derivatives. Advances In Silicon Science, 3-51. doi:10.1007/978-1-4020-8172-9_1 | es_ES |
dc.description.references | Nakajima, Y., & Shimada, S. (2015). Hydrosilylation reaction of olefins: recent advances and perspectives. RSC Advances, 5(26), 20603-20616. doi:10.1039/c4ra17281g | es_ES |
dc.description.references | Sun, J., & Deng, L. (2015). Cobalt Complex-Catalyzed Hydrosilylation of Alkenes and Alkynes. ACS Catalysis, 6(1), 290-300. doi:10.1021/acscatal.5b02308 | es_ES |
dc.description.references | Wang, C., Teo, W. J., & Ge, S. (2016). Cobalt-Catalyzed Regiodivergent Hydrosilylation of Vinylarenes and Aliphatic Alkenes: Ligand- and Silane-Dependent Regioselectivities. ACS Catalysis, 7(1), 855-863. doi:10.1021/acscatal.6b02518 | es_ES |
dc.description.references | Markó, I. E., Stérin, S., Buisine, O., Mignani, G., Branlard, P., Tinant, B., & Declercq, J.-P. (2002). Selective and Efficient Platinum(0)-Carbene Complexes As Hydrosilylation Catalysts. Science, 298(5591), 204-206. doi:10.1126/science.1073338 | es_ES |
dc.description.references | Markó, I. E., Stérin, S., Buisine, O., Berthon, G., Michaud, G., Tinant, B., & Declercq, J.-P. (2004). Highly Active and Selective Platinum(0)-Carbene Complexes. Efficient, Catalytic Hydrosilylation of Functionalised Olefins. Advanced Synthesis & Catalysis, 346(12), 1429-1434. doi:10.1002/adsc.200404048 | es_ES |
dc.description.references | Marciniec, B., Posała, K., Kownacki, I., Kubicki, M., & Taylor, R. (2012). New Bis(dialkynyldisiloxane)triplatinum(0) Cluster: Synthesis, Structure, and Catalytic Activity in Olefin-Hydrosilylation Reactions. ChemCatChem, 4(12), 1935-1937. doi:10.1002/cctc.201200319 | es_ES |
dc.description.references | Bernhammer, J. C., & Huynh, H. V. (2013). Platinum(II) Complexes with Thioether-Functionalized Benzimidazolin-2-ylidene Ligands: Synthesis, Structural Characterization, and Application in Hydroelementation Reactions. Organometallics, 33(1), 172-180. doi:10.1021/om400929t | es_ES |
dc.description.references | 2003 minerals.usgs.gov/minerals/pubs/commodity/platinum/ | es_ES |
dc.description.references | Du, X., & Huang, Z. (2017). Advances in Base-Metal-Catalyzed Alkene Hydrosilylation. ACS Catalysis, 7(2), 1227-1243. doi:10.1021/acscatal.6b02990 | es_ES |
dc.description.references | Tondreau, A. M., Atienza, C. C. H., Weller, K. J., Nye, S. A., Lewis, K. M., Delis, J. G. P., & Chirik, P. J. (2012). Iron Catalysts for Selective Anti-Markovnikov Alkene Hydrosilylation Using Tertiary Silanes. Science, 335(6068), 567-570. doi:10.1126/science.1214451 | es_ES |
dc.description.references | Mitchener, J. C., & Wrighton, M. S. (1981). Photogeneration of very active homogeneous catalysts using laser light excitation of iron carbonyl precursors. Journal of the American Chemical Society, 103(4), 975-977. doi:10.1021/ja00394a060 | es_ES |
dc.description.references | Chalk, A. J., & Harrod, J. F. (1967). Homogeneous Catalysis. IV. Some Reactions of Silicon Hydrides in the Presence of Cobalt Carbonyls. Journal of the American Chemical Society, 89(7), 1640-1647. doi:10.1021/ja00983a020 | es_ES |
dc.description.references | A. Schroeder, M., & S. Wrighton, M. (1977). Pentacarbonyliron(0) photocatalyzed reactions of trialkylsilanes with alkenes. Journal of Organometallic Chemistry, 128(3), 345-358. doi:10.1016/s0022-328x(00)92207-1 | es_ES |
dc.description.references | Reichel, C. L., & Wrighton, M. S. (1980). Photochemistry of cobalt carbonyl complexes having a cobalt-silicon bond and its importance in activation of catalysis. Inorganic Chemistry, 19(12), 3858-3860. doi:10.1021/ic50214a058 | es_ES |
dc.description.references | Seitz, F., & Wrighton, M. S. (1988). Photochemical Reaction of [(CO)4Co(SiEt3)] with Ethylene: Implications for Cobaltcarbonyl-Catalyzed Hydrosilation of Alkenes. Angewandte Chemie International Edition in English, 27(2), 289-291. doi:10.1002/anie.198802891 | es_ES |
dc.description.references | Seitz, F., & Wrighton, M. S. (1988). Die photochemische Reaktion von [(CO)4Co(SiEt3)] mit Ethylen und ihre Bedeutung für die Katalyse der Hydrosilylierung von Alkenen durch Carbonylcobalt-Komplexe. Angewandte Chemie, 100(2), 281-283. doi:10.1002/ange.19881000217 | es_ES |
dc.description.references | Hojilla Atienza, C. C., Tondreau, A. M., Weller, K. J., Lewis, K. M., Cruse, R. W., Nye, S. A., … Chirik, P. J. (2012). High-Selectivity Bis(imino)pyridine Iron Catalysts for the Hydrosilylation of 1,2,4-Trivinylcyclohexane. ACS Catalysis, 2(10), 2169-2172. doi:10.1021/cs300584b | es_ES |
dc.description.references | Bart, S. C., Lobkovsky, E., & Chirik, P. J. (2004). Preparation and Molecular and Electronic Structures of Iron(0) Dinitrogen and Silane Complexes and Their Application to Catalytic Hydrogenation and Hydrosilation. Journal of the American Chemical Society, 126(42), 13794-13807. doi:10.1021/ja046753t | es_ES |
dc.description.references | Wu, J. Y., Stanzl, B. N., & Ritter, T. (2010). A Strategy for the Synthesis of Well-Defined Iron Catalysts and Application to Regioselective Diene Hydrosilylation. Journal of the American Chemical Society, 132(38), 13214-13216. doi:10.1021/ja106853y | es_ES |
dc.description.references | Marciniec, B., Kownacka, A., Kownacki, I., & Taylor, R. (2014). Hydrosilylation cross-linking of silicon fluids by a novel class of iron(0) catalysts. Applied Catalysis A: General, 486, 230-238. doi:10.1016/j.apcata.2014.08.037 | es_ES |
dc.description.references | Chen, J., Cheng, B., Cao, M., & Lu, Z. (2015). Iron-Catalyzed Asymmetric Hydrosilylation of 1,1-Disubstituted Alkenes. Angewandte Chemie International Edition, 54(15), 4661-4664. doi:10.1002/anie.201411884 | es_ES |
dc.description.references | Chen, J., Cheng, B., Cao, M., & Lu, Z. (2015). Iron-Catalyzed Asymmetric Hydrosilylation of 1,1-Disubstituted Alkenes. Angewandte Chemie, 127(15), 4744-4747. doi:10.1002/ange.201411884 | es_ES |
dc.description.references | Cheng, B., Liu, W., & Lu, Z. (2018). Iron-Catalyzed Highly Enantioselective Hydrosilylation of Unactivated Terminal Alkenes. Journal of the American Chemical Society, 140(15), 5014-5017. doi:10.1021/jacs.8b01638 | es_ES |
dc.description.references | Atienza, C. C. H., Diao, T., Weller, K. J., Nye, S. A., Lewis, K. M., Delis, J. G. P., … Chirik, P. J. (2014). Bis(imino)pyridine Cobalt-Catalyzed Dehydrogenative Silylation of Alkenes: Scope, Mechanism, and Origins of Selective Allylsilane Formation. Journal of the American Chemical Society, 136(34), 12108-12118. doi:10.1021/ja5060884 | es_ES |
dc.description.references | Mo, Z., Liu, Y., & Deng, L. (2013). Anchoring of Silyl Donors on a N-Heterocyclic Carbene through the Cobalt-Mediated Silylation of Benzylic CH Bonds. Angewandte Chemie, 125(41), 11045-11049. doi:10.1002/ange.201304596 | es_ES |
dc.description.references | Chen, C., Hecht, M. B., Kavara, A., Brennessel, W. W., Mercado, B. Q., Weix, D. J., & Holland, P. L. (2015). Rapid, Regioconvergent, Solvent-Free Alkene Hydrosilylation with a Cobalt Catalyst. Journal of the American Chemical Society, 137(41), 13244-13247. doi:10.1021/jacs.5b08611 | es_ES |
dc.description.references | Lipschutz, M. I., & Tilley, T. D. (2012). Synthesis and reactivity of a conveniently prepared two-coordinate bis(amido) nickel(ii) complex. Chemical Communications, 48(57), 7146. doi:10.1039/c2cc32974c | es_ES |
dc.description.references | Buslov, I., Becouse, J., Mazza, S., Montandon-Clerc, M., & Hu, X. (2015). Chemoselective Alkene Hydrosilylation Catalyzed by Nickel Pincer Complexes. Angewandte Chemie International Edition, 54(48), 14523-14526. doi:10.1002/anie.201507829 | es_ES |
dc.description.references | Buslov, I., Becouse, J., Mazza, S., Montandon-Clerc, M., & Hu, X. (2015). Chemoselective Alkene Hydrosilylation Catalyzed by Nickel Pincer Complexes. Angewandte Chemie, 127(48), 14731-14734. doi:10.1002/ange.201507829 | es_ES |
dc.description.references | Greenhalgh, M. D., Frank, D. J., & Thomas, S. P. (2014). Iron-Catalysed Chemo-, Regio-, and Stereoselective Hydrosilylation of Alkenes and Alkynes using a Bench-Stable Iron(II) Pre-Catalyst. Advanced Synthesis & Catalysis, 356(2-3), 584-590. doi:10.1002/adsc.201300827 | es_ES |
dc.description.references | K. Brandstadt S. Cook B. T. Nguyen A. Surgenor R. Taylor M. Tzou 2013 | es_ES |
dc.description.references | Docherty, J. H., Peng, J., Dominey, A. P., & Thomas, S. P. (2017). Activation and discovery of earth-abundant metal catalysts using sodium tert-butoxide. Nature Chemistry, 9(6), 595-600. doi:10.1038/nchem.2697 | es_ES |
dc.description.references | Noda, D., Tahara, A., Sunada, Y., & Nagashima, H. (2016). Non-Precious-Metal Catalytic Systems Involving Iron or Cobalt Carboxylates and Alkyl Isocyanides for Hydrosilylation of Alkenes with Hydrosiloxanes. Journal of the American Chemical Society, 138(8), 2480-2483. doi:10.1021/jacs.5b11311 | es_ES |
dc.description.references | Schuster, C. H., Diao, T., Pappas, I., & Chirik, P. J. (2016). Bench-Stable, Substrate-Activated Cobalt Carboxylate Pre-Catalysts for Alkene Hydrosilylation with Tertiary Silanes. ACS Catalysis, 6(4), 2632-2636. doi:10.1021/acscatal.6b00304 | es_ES |
dc.description.references | Constable, E. C., Housecroft, C. E., Jullien, V., Neuburger, M., & Schaffner, S. (2006). Structural characterisation of a 1:1 cobalt(II) – 2,2′:6′,2″-Terpyridine complex. Inorganic Chemistry Communications, 9(5), 504-506. doi:10.1016/j.inoche.2006.01.018 | es_ES |
dc.description.references | Indumathy, R., Radhika, S., Kanthimathi, M., Weyhermuller, T., & Unni Nair, B. (2007). Cobalt complexes of terpyridine ligand: Crystal structure and photocleavage of DNA. Journal of Inorganic Biochemistry, 101(3), 434-443. doi:10.1016/j.jinorgbio.2006.11.002 | es_ES |
dc.description.references | Mizuno, K., Imamura, S., & Lunsford, J. H. (1984). An EPR study of [CoIIL2]2+, [CoIILL’]2+ and [CoIIILL’O2-]2+ (L = 2,2’,2"-terpyridine; L’ = 2,2’-bipyridine) complexes in zeolite Y. Inorganic Chemistry, 23(22), 3510-3514. doi:10.1021/ic00190a015 | es_ES |
dc.description.references | Cibian, M., & Hanan, G. S. (2015). Geometry and Spin Change at the Heart of a Cobalt(II) Complex: A Special Case of Solvatomorphism. Chemistry - A European Journal, 21(26), 9474-9481. doi:10.1002/chem.201500852 | es_ES |
dc.description.references | G. R. Eaton S. S. Eaton D. P. Barr R. T. Weber Quantitative EPR Springer-Verlag Wien Austria 2010 | es_ES |
dc.description.references | Evans, D. F. (1959). 400. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. Journal of the Chemical Society (Resumed), 2003. doi:10.1039/jr9590002003 | es_ES |
dc.description.references | Evans, D. F., Fazakerley, G. V., & Phillips, R. F. (1971). Organometallic compounds of bivalent europium, ytterbium, and samarium. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1931. doi:10.1039/j19710001931 | es_ES |
dc.description.references | C. W. Garland J. W. Nibler D. P. Shoemaker Experiments in Physical Chemistry 2003 | es_ES |
dc.description.references | Sprengers, J. W., de Greef, M., Duin, M. A., & Elsevier, C. J. (2003). Stable Platinum(0) Catalysts for Catalytic Hydrosilylation of Styrene and Synthesis of [Pt(Ar-bian)(η2-alkene)] Complexes. European Journal of Inorganic Chemistry, 2003(20), 3811-3819. doi:10.1002/ejic.200300088 | es_ES |
dc.description.references | Bleith, T., & Gade, L. H. (2016). Mechanism of the Iron(II)-Catalyzed Hydrosilylation of Ketones: Activation of Iron Carboxylate Precatalysts and Reaction Pathways of the Active Catalyst. Journal of the American Chemical Society, 138(14), 4972-4983. doi:10.1021/jacs.6b02173 | es_ES |
dc.description.references | Park, E. S., Ro, H. W., Nguyen, C. V., Jaffe, R. L., & Yoon, D. Y. (2008). Infrared Spectroscopy Study of Microstructures of Poly(silsesquioxane)s. Chemistry of Materials, 20(4), 1548-1554. doi:10.1021/cm071575z | es_ES |