- -

Cobalt Catalysts for Alkene Hydrosilylation under Aerobic Conditions without Dry Solvents or Additives

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cobalt Catalysts for Alkene Hydrosilylation under Aerobic Conditions without Dry Solvents or Additives

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gutiérrez-Tarriño, Silvia es_ES
dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author Oña-Burgos, Pascual es_ES
dc.date.accessioned 2020-06-04T06:30:29Z
dc.date.available 2020-06-04T06:30:29Z
dc.date.issued 2018-12-06 es_ES
dc.identifier.issn 1434-1948 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145196
dc.description.abstract [EN] Alkene hydrosilylation is typically performed with Pt catalysts, but inexpensive base-metal catalysts would be preferred. Here, we report a simple method for the use of air-stable cobalt catalysts for anti-Markovnikov alkene hydrosilylation that can be used under aerobic conditions without dry solvents or additives. These catalysts can be generated from low-cost commercially available materials. In addition, these catalysts possess good catalytic ability for both hydrosilanes and hydroalkoxysilanes. Finally, a mechanistic study demonstrates that the silane and the catalyst generate a Co-H species in the course of the reaction, which has been observed by in situ Raman spectroscopy. es_ES
dc.description.sponsorship Program Severo Ochoa SEV-2016-0683 is gratefully acknowledged. S. G. T. and P. O.-B. thank MINECO for a FPU Ph.D. fellowship FPU16/02117 and a Ramon y Cajal contract RYC-2014-16620, respectively. Authors would like to thank Prof. Avelino Corma for discussion on the work and support. Authors would like to thank Ms. Adelina Munoz, Dr. Alejandro Vidal, and Ms. Carmen Clemente for the Raman, EPR, and ESI-MS measurements, respectively. Authors are also grateful for the use of analytical facilities at the X-ray Unit of RIAIDT (Universidad de Santiago de Compostela). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof European Journal of Inorganic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Homogeneous catalysis es_ES
dc.subject Cobalt es_ES
dc.subject Alkenes es_ES
dc.subject Hydrosilylation es_ES
dc.subject Reaction mechanisms es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Cobalt Catalysts for Alkene Hydrosilylation under Aerobic Conditions without Dry Solvents or Additives es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/ejic.201801068 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU16%2F02117/ES/FPU16%2F02117/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2014-16620/ES/RYC-2014-16620/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Gutiérrez-Tarriño, S.; Concepción Heydorn, P.; Oña-Burgos, P. (2018). Cobalt Catalysts for Alkene Hydrosilylation under Aerobic Conditions without Dry Solvents or Additives. European Journal of Inorganic Chemistry. 45:4867-4874. https://doi.org/10.1002/ejic.201801068 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/ejic.201801068 es_ES
dc.description.upvformatpinicio 4867 es_ES
dc.description.upvformatpfin 4874 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 45 es_ES
dc.relation.pasarela S\373666 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Marciniec, B. (s. f.). Hydrosilylation of Alkenes and Their Derivatives. Advances In Silicon Science, 3-51. doi:10.1007/978-1-4020-8172-9_1 es_ES
dc.description.references Nakajima, Y., & Shimada, S. (2015). Hydrosilylation reaction of olefins: recent advances and perspectives. RSC Advances, 5(26), 20603-20616. doi:10.1039/c4ra17281g es_ES
dc.description.references Sun, J., & Deng, L. (2015). Cobalt Complex-Catalyzed Hydrosilylation of Alkenes and Alkynes. ACS Catalysis, 6(1), 290-300. doi:10.1021/acscatal.5b02308 es_ES
dc.description.references Wang, C., Teo, W. J., & Ge, S. (2016). Cobalt-Catalyzed Regiodivergent Hydrosilylation of Vinylarenes and Aliphatic Alkenes: Ligand- and Silane-Dependent Regioselectivities. ACS Catalysis, 7(1), 855-863. doi:10.1021/acscatal.6b02518 es_ES
dc.description.references Markó, I. E., Stérin, S., Buisine, O., Mignani, G., Branlard, P., Tinant, B., & Declercq, J.-P. (2002). Selective and Efficient Platinum(0)-Carbene Complexes As Hydrosilylation Catalysts. Science, 298(5591), 204-206. doi:10.1126/science.1073338 es_ES
dc.description.references Markó, I. E., Stérin, S., Buisine, O., Berthon, G., Michaud, G., Tinant, B., & Declercq, J.-P. (2004). Highly Active and Selective Platinum(0)-Carbene Complexes. Efficient, Catalytic Hydrosilylation of Functionalised Olefins. Advanced Synthesis & Catalysis, 346(12), 1429-1434. doi:10.1002/adsc.200404048 es_ES
dc.description.references Marciniec, B., Posała, K., Kownacki, I., Kubicki, M., & Taylor, R. (2012). New Bis(dialkynyldisiloxane)triplatinum(0) Cluster: Synthesis, Structure, and Catalytic Activity in Olefin-Hydrosilylation Reactions. ChemCatChem, 4(12), 1935-1937. doi:10.1002/cctc.201200319 es_ES
dc.description.references Bernhammer, J. C., & Huynh, H. V. (2013). Platinum(II) Complexes with Thioether-Functionalized Benzimidazolin-2-ylidene Ligands: Synthesis, Structural Characterization, and Application in Hydroelementation Reactions. Organometallics, 33(1), 172-180. doi:10.1021/om400929t es_ES
dc.description.references 2003 minerals.usgs.gov/minerals/pubs/commodity/platinum/ es_ES
dc.description.references Du, X., & Huang, Z. (2017). Advances in Base-Metal-Catalyzed Alkene Hydrosilylation. ACS Catalysis, 7(2), 1227-1243. doi:10.1021/acscatal.6b02990 es_ES
dc.description.references Tondreau, A. M., Atienza, C. C. H., Weller, K. J., Nye, S. A., Lewis, K. M., Delis, J. G. P., & Chirik, P. J. (2012). Iron Catalysts for Selective Anti-Markovnikov Alkene Hydrosilylation Using Tertiary Silanes. Science, 335(6068), 567-570. doi:10.1126/science.1214451 es_ES
dc.description.references Mitchener, J. C., & Wrighton, M. S. (1981). Photogeneration of very active homogeneous catalysts using laser light excitation of iron carbonyl precursors. Journal of the American Chemical Society, 103(4), 975-977. doi:10.1021/ja00394a060 es_ES
dc.description.references Chalk, A. J., & Harrod, J. F. (1967). Homogeneous Catalysis. IV. Some Reactions of Silicon Hydrides in the Presence of Cobalt Carbonyls. Journal of the American Chemical Society, 89(7), 1640-1647. doi:10.1021/ja00983a020 es_ES
dc.description.references A. Schroeder, M., & S. Wrighton, M. (1977). Pentacarbonyliron(0) photocatalyzed reactions of trialkylsilanes with alkenes. Journal of Organometallic Chemistry, 128(3), 345-358. doi:10.1016/s0022-328x(00)92207-1 es_ES
dc.description.references Reichel, C. L., & Wrighton, M. S. (1980). Photochemistry of cobalt carbonyl complexes having a cobalt-silicon bond and its importance in activation of catalysis. Inorganic Chemistry, 19(12), 3858-3860. doi:10.1021/ic50214a058 es_ES
dc.description.references Seitz, F., & Wrighton, M. S. (1988). Photochemical Reaction of [(CO)4Co(SiEt3)] with Ethylene: Implications for Cobaltcarbonyl-Catalyzed Hydrosilation of Alkenes. Angewandte Chemie International Edition in English, 27(2), 289-291. doi:10.1002/anie.198802891 es_ES
dc.description.references Seitz, F., & Wrighton, M. S. (1988). Die photochemische Reaktion von [(CO)4Co(SiEt3)] mit Ethylen und ihre Bedeutung für die Katalyse der Hydrosilylierung von Alkenen durch Carbonylcobalt-Komplexe. Angewandte Chemie, 100(2), 281-283. doi:10.1002/ange.19881000217 es_ES
dc.description.references Hojilla Atienza, C. C., Tondreau, A. M., Weller, K. J., Lewis, K. M., Cruse, R. W., Nye, S. A., … Chirik, P. J. (2012). High-Selectivity Bis(imino)pyridine Iron Catalysts for the Hydrosilylation of 1,2,4-Trivinylcyclohexane. ACS Catalysis, 2(10), 2169-2172. doi:10.1021/cs300584b es_ES
dc.description.references Bart, S. C., Lobkovsky, E., & Chirik, P. J. (2004). Preparation and Molecular and Electronic Structures of Iron(0) Dinitrogen and Silane Complexes and Their Application to Catalytic Hydrogenation and Hydrosilation. Journal of the American Chemical Society, 126(42), 13794-13807. doi:10.1021/ja046753t es_ES
dc.description.references Wu, J. Y., Stanzl, B. N., & Ritter, T. (2010). A Strategy for the Synthesis of Well-Defined Iron Catalysts and Application to Regioselective Diene Hydrosilylation. Journal of the American Chemical Society, 132(38), 13214-13216. doi:10.1021/ja106853y es_ES
dc.description.references Marciniec, B., Kownacka, A., Kownacki, I., & Taylor, R. (2014). Hydrosilylation cross-linking of silicon fluids by a novel class of iron(0) catalysts. Applied Catalysis A: General, 486, 230-238. doi:10.1016/j.apcata.2014.08.037 es_ES
dc.description.references Chen, J., Cheng, B., Cao, M., & Lu, Z. (2015). Iron-Catalyzed Asymmetric Hydrosilylation of 1,1-Disubstituted Alkenes. Angewandte Chemie International Edition, 54(15), 4661-4664. doi:10.1002/anie.201411884 es_ES
dc.description.references Chen, J., Cheng, B., Cao, M., & Lu, Z. (2015). Iron-Catalyzed Asymmetric Hydrosilylation of 1,1-Disubstituted Alkenes. Angewandte Chemie, 127(15), 4744-4747. doi:10.1002/ange.201411884 es_ES
dc.description.references Cheng, B., Liu, W., & Lu, Z. (2018). Iron-Catalyzed Highly Enantioselective Hydrosilylation of Unactivated Terminal Alkenes. Journal of the American Chemical Society, 140(15), 5014-5017. doi:10.1021/jacs.8b01638 es_ES
dc.description.references Atienza, C. C. H., Diao, T., Weller, K. J., Nye, S. A., Lewis, K. M., Delis, J. G. P., … Chirik, P. J. (2014). Bis(imino)pyridine Cobalt-Catalyzed Dehydrogenative Silylation of Alkenes: Scope, Mechanism, and Origins of Selective Allylsilane Formation. Journal of the American Chemical Society, 136(34), 12108-12118. doi:10.1021/ja5060884 es_ES
dc.description.references Mo, Z., Liu, Y., & Deng, L. (2013). Anchoring of Silyl Donors on a N-Heterocyclic Carbene through the Cobalt-Mediated Silylation of Benzylic CH Bonds. Angewandte Chemie, 125(41), 11045-11049. doi:10.1002/ange.201304596 es_ES
dc.description.references Chen, C., Hecht, M. B., Kavara, A., Brennessel, W. W., Mercado, B. Q., Weix, D. J., & Holland, P. L. (2015). Rapid, Regioconvergent, Solvent-Free Alkene Hydrosilylation with a Cobalt Catalyst. Journal of the American Chemical Society, 137(41), 13244-13247. doi:10.1021/jacs.5b08611 es_ES
dc.description.references Lipschutz, M. I., & Tilley, T. D. (2012). Synthesis and reactivity of a conveniently prepared two-coordinate bis(amido) nickel(ii) complex. Chemical Communications, 48(57), 7146. doi:10.1039/c2cc32974c es_ES
dc.description.references Buslov, I., Becouse, J., Mazza, S., Montandon-Clerc, M., & Hu, X. (2015). Chemoselective Alkene Hydrosilylation Catalyzed by Nickel Pincer Complexes. Angewandte Chemie International Edition, 54(48), 14523-14526. doi:10.1002/anie.201507829 es_ES
dc.description.references Buslov, I., Becouse, J., Mazza, S., Montandon-Clerc, M., & Hu, X. (2015). Chemoselective Alkene Hydrosilylation Catalyzed by Nickel Pincer Complexes. Angewandte Chemie, 127(48), 14731-14734. doi:10.1002/ange.201507829 es_ES
dc.description.references Greenhalgh, M. D., Frank, D. J., & Thomas, S. P. (2014). Iron-Catalysed Chemo-, Regio-, and Stereoselective Hydrosilylation of Alkenes and Alkynes using a Bench-Stable Iron(II) Pre-Catalyst. Advanced Synthesis & Catalysis, 356(2-3), 584-590. doi:10.1002/adsc.201300827 es_ES
dc.description.references K. Brandstadt S. Cook B. T. Nguyen A. Surgenor R. Taylor M. Tzou 2013 es_ES
dc.description.references Docherty, J. H., Peng, J., Dominey, A. P., & Thomas, S. P. (2017). Activation and discovery of earth-abundant metal catalysts using sodium tert-butoxide. Nature Chemistry, 9(6), 595-600. doi:10.1038/nchem.2697 es_ES
dc.description.references Noda, D., Tahara, A., Sunada, Y., & Nagashima, H. (2016). Non-Precious-Metal Catalytic Systems Involving Iron or Cobalt Carboxylates and Alkyl Isocyanides for Hydrosilylation of Alkenes with Hydrosiloxanes. Journal of the American Chemical Society, 138(8), 2480-2483. doi:10.1021/jacs.5b11311 es_ES
dc.description.references Schuster, C. H., Diao, T., Pappas, I., & Chirik, P. J. (2016). Bench-Stable, Substrate-Activated Cobalt Carboxylate Pre-Catalysts for Alkene Hydrosilylation with Tertiary Silanes. ACS Catalysis, 6(4), 2632-2636. doi:10.1021/acscatal.6b00304 es_ES
dc.description.references Constable, E. C., Housecroft, C. E., Jullien, V., Neuburger, M., & Schaffner, S. (2006). Structural characterisation of a 1:1 cobalt(II) – 2,2′:6′,2″-Terpyridine complex. Inorganic Chemistry Communications, 9(5), 504-506. doi:10.1016/j.inoche.2006.01.018 es_ES
dc.description.references Indumathy, R., Radhika, S., Kanthimathi, M., Weyhermuller, T., & Unni Nair, B. (2007). Cobalt complexes of terpyridine ligand: Crystal structure and photocleavage of DNA. Journal of Inorganic Biochemistry, 101(3), 434-443. doi:10.1016/j.jinorgbio.2006.11.002 es_ES
dc.description.references Mizuno, K., Imamura, S., & Lunsford, J. H. (1984). An EPR study of [CoIIL2]2+, [CoIILL’]2+ and [CoIIILL’O2-]2+ (L = 2,2’,2"-terpyridine; L’ = 2,2’-bipyridine) complexes in zeolite Y. Inorganic Chemistry, 23(22), 3510-3514. doi:10.1021/ic00190a015 es_ES
dc.description.references Cibian, M., & Hanan, G. S. (2015). Geometry and Spin Change at the Heart of a Cobalt(II) Complex: A Special Case of Solvatomorphism. Chemistry - A European Journal, 21(26), 9474-9481. doi:10.1002/chem.201500852 es_ES
dc.description.references G. R. Eaton S. S. Eaton D. P. Barr R. T. Weber Quantitative EPR Springer-Verlag Wien Austria 2010 es_ES
dc.description.references Evans, D. F. (1959). 400. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. Journal of the Chemical Society (Resumed), 2003. doi:10.1039/jr9590002003 es_ES
dc.description.references Evans, D. F., Fazakerley, G. V., & Phillips, R. F. (1971). Organometallic compounds of bivalent europium, ytterbium, and samarium. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1931. doi:10.1039/j19710001931 es_ES
dc.description.references C. W. Garland J. W. Nibler D. P. Shoemaker Experiments in Physical Chemistry 2003 es_ES
dc.description.references Sprengers, J. W., de Greef, M., Duin, M. A., & Elsevier, C. J. (2003). Stable Platinum(0) Catalysts for Catalytic Hydrosilylation of Styrene and Synthesis of [Pt(Ar-bian)(η2-alkene)] Complexes. European Journal of Inorganic Chemistry, 2003(20), 3811-3819. doi:10.1002/ejic.200300088 es_ES
dc.description.references Bleith, T., & Gade, L. H. (2016). Mechanism of the Iron(II)-Catalyzed Hydrosilylation of Ketones: Activation of Iron Carboxylate Precatalysts and Reaction Pathways of the Active Catalyst. Journal of the American Chemical Society, 138(14), 4972-4983. doi:10.1021/jacs.6b02173 es_ES
dc.description.references Park, E. S., Ro, H. W., Nguyen, C. V., Jaffe, R. L., & Yoon, D. Y. (2008). Infrared Spectroscopy Study of Microstructures of Poly(silsesquioxane)s. Chemistry of Materials, 20(4), 1548-1554. doi:10.1021/cm071575z es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem