Marciniec, B. (s. f.). Hydrosilylation of Alkenes and Their Derivatives. Advances In Silicon Science, 3-51. doi:10.1007/978-1-4020-8172-9_1
Nakajima, Y., & Shimada, S. (2015). Hydrosilylation reaction of olefins: recent advances and perspectives. RSC Advances, 5(26), 20603-20616. doi:10.1039/c4ra17281g
Sun, J., & Deng, L. (2015). Cobalt Complex-Catalyzed Hydrosilylation of Alkenes and Alkynes. ACS Catalysis, 6(1), 290-300. doi:10.1021/acscatal.5b02308
[+]
Marciniec, B. (s. f.). Hydrosilylation of Alkenes and Their Derivatives. Advances In Silicon Science, 3-51. doi:10.1007/978-1-4020-8172-9_1
Nakajima, Y., & Shimada, S. (2015). Hydrosilylation reaction of olefins: recent advances and perspectives. RSC Advances, 5(26), 20603-20616. doi:10.1039/c4ra17281g
Sun, J., & Deng, L. (2015). Cobalt Complex-Catalyzed Hydrosilylation of Alkenes and Alkynes. ACS Catalysis, 6(1), 290-300. doi:10.1021/acscatal.5b02308
Wang, C., Teo, W. J., & Ge, S. (2016). Cobalt-Catalyzed Regiodivergent Hydrosilylation of Vinylarenes and Aliphatic Alkenes: Ligand- and Silane-Dependent Regioselectivities. ACS Catalysis, 7(1), 855-863. doi:10.1021/acscatal.6b02518
Markó, I. E., Stérin, S., Buisine, O., Mignani, G., Branlard, P., Tinant, B., & Declercq, J.-P. (2002). Selective and Efficient Platinum(0)-Carbene Complexes As Hydrosilylation Catalysts. Science, 298(5591), 204-206. doi:10.1126/science.1073338
Markó, I. E., Stérin, S., Buisine, O., Berthon, G., Michaud, G., Tinant, B., & Declercq, J.-P. (2004). Highly Active and Selective Platinum(0)-Carbene Complexes. Efficient, Catalytic Hydrosilylation of Functionalised Olefins. Advanced Synthesis & Catalysis, 346(12), 1429-1434. doi:10.1002/adsc.200404048
Marciniec, B., Posała, K., Kownacki, I., Kubicki, M., & Taylor, R. (2012). New Bis(dialkynyldisiloxane)triplatinum(0) Cluster: Synthesis, Structure, and Catalytic Activity in Olefin-Hydrosilylation Reactions. ChemCatChem, 4(12), 1935-1937. doi:10.1002/cctc.201200319
Bernhammer, J. C., & Huynh, H. V. (2013). Platinum(II) Complexes with Thioether-Functionalized Benzimidazolin-2-ylidene Ligands: Synthesis, Structural Characterization, and Application in Hydroelementation Reactions. Organometallics, 33(1), 172-180. doi:10.1021/om400929t
2003 minerals.usgs.gov/minerals/pubs/commodity/platinum/
Du, X., & Huang, Z. (2017). Advances in Base-Metal-Catalyzed Alkene Hydrosilylation. ACS Catalysis, 7(2), 1227-1243. doi:10.1021/acscatal.6b02990
Tondreau, A. M., Atienza, C. C. H., Weller, K. J., Nye, S. A., Lewis, K. M., Delis, J. G. P., & Chirik, P. J. (2012). Iron Catalysts for Selective Anti-Markovnikov Alkene Hydrosilylation Using Tertiary Silanes. Science, 335(6068), 567-570. doi:10.1126/science.1214451
Mitchener, J. C., & Wrighton, M. S. (1981). Photogeneration of very active homogeneous catalysts using laser light excitation of iron carbonyl precursors. Journal of the American Chemical Society, 103(4), 975-977. doi:10.1021/ja00394a060
Chalk, A. J., & Harrod, J. F. (1967). Homogeneous Catalysis. IV. Some Reactions of Silicon Hydrides in the Presence of Cobalt Carbonyls. Journal of the American Chemical Society, 89(7), 1640-1647. doi:10.1021/ja00983a020
A. Schroeder, M., & S. Wrighton, M. (1977). Pentacarbonyliron(0) photocatalyzed reactions of trialkylsilanes with alkenes. Journal of Organometallic Chemistry, 128(3), 345-358. doi:10.1016/s0022-328x(00)92207-1
Reichel, C. L., & Wrighton, M. S. (1980). Photochemistry of cobalt carbonyl complexes having a cobalt-silicon bond and its importance in activation of catalysis. Inorganic Chemistry, 19(12), 3858-3860. doi:10.1021/ic50214a058
Seitz, F., & Wrighton, M. S. (1988). Photochemical Reaction of [(CO)4Co(SiEt3)] with Ethylene: Implications for Cobaltcarbonyl-Catalyzed Hydrosilation of Alkenes. Angewandte Chemie International Edition in English, 27(2), 289-291. doi:10.1002/anie.198802891
Seitz, F., & Wrighton, M. S. (1988). Die photochemische Reaktion von [(CO)4Co(SiEt3)] mit Ethylen und ihre Bedeutung für die Katalyse der Hydrosilylierung von Alkenen durch Carbonylcobalt-Komplexe. Angewandte Chemie, 100(2), 281-283. doi:10.1002/ange.19881000217
Hojilla Atienza, C. C., Tondreau, A. M., Weller, K. J., Lewis, K. M., Cruse, R. W., Nye, S. A., … Chirik, P. J. (2012). High-Selectivity Bis(imino)pyridine Iron Catalysts for the Hydrosilylation of 1,2,4-Trivinylcyclohexane. ACS Catalysis, 2(10), 2169-2172. doi:10.1021/cs300584b
Bart, S. C., Lobkovsky, E., & Chirik, P. J. (2004). Preparation and Molecular and Electronic Structures of Iron(0) Dinitrogen and Silane Complexes and Their Application to Catalytic Hydrogenation and Hydrosilation. Journal of the American Chemical Society, 126(42), 13794-13807. doi:10.1021/ja046753t
Wu, J. Y., Stanzl, B. N., & Ritter, T. (2010). A Strategy for the Synthesis of Well-Defined Iron Catalysts and Application to Regioselective Diene Hydrosilylation. Journal of the American Chemical Society, 132(38), 13214-13216. doi:10.1021/ja106853y
Marciniec, B., Kownacka, A., Kownacki, I., & Taylor, R. (2014). Hydrosilylation cross-linking of silicon fluids by a novel class of iron(0) catalysts. Applied Catalysis A: General, 486, 230-238. doi:10.1016/j.apcata.2014.08.037
Chen, J., Cheng, B., Cao, M., & Lu, Z. (2015). Iron-Catalyzed Asymmetric Hydrosilylation of 1,1-Disubstituted Alkenes. Angewandte Chemie International Edition, 54(15), 4661-4664. doi:10.1002/anie.201411884
Chen, J., Cheng, B., Cao, M., & Lu, Z. (2015). Iron-Catalyzed Asymmetric Hydrosilylation of 1,1-Disubstituted Alkenes. Angewandte Chemie, 127(15), 4744-4747. doi:10.1002/ange.201411884
Cheng, B., Liu, W., & Lu, Z. (2018). Iron-Catalyzed Highly Enantioselective Hydrosilylation of Unactivated Terminal Alkenes. Journal of the American Chemical Society, 140(15), 5014-5017. doi:10.1021/jacs.8b01638
Atienza, C. C. H., Diao, T., Weller, K. J., Nye, S. A., Lewis, K. M., Delis, J. G. P., … Chirik, P. J. (2014). Bis(imino)pyridine Cobalt-Catalyzed Dehydrogenative Silylation of Alkenes: Scope, Mechanism, and Origins of Selective Allylsilane Formation. Journal of the American Chemical Society, 136(34), 12108-12118. doi:10.1021/ja5060884
Mo, Z., Liu, Y., & Deng, L. (2013). Anchoring of Silyl Donors on a N-Heterocyclic Carbene through the Cobalt-Mediated Silylation of Benzylic CH Bonds. Angewandte Chemie, 125(41), 11045-11049. doi:10.1002/ange.201304596
Chen, C., Hecht, M. B., Kavara, A., Brennessel, W. W., Mercado, B. Q., Weix, D. J., & Holland, P. L. (2015). Rapid, Regioconvergent, Solvent-Free Alkene Hydrosilylation with a Cobalt Catalyst. Journal of the American Chemical Society, 137(41), 13244-13247. doi:10.1021/jacs.5b08611
Lipschutz, M. I., & Tilley, T. D. (2012). Synthesis and reactivity of a conveniently prepared two-coordinate bis(amido) nickel(ii) complex. Chemical Communications, 48(57), 7146. doi:10.1039/c2cc32974c
Buslov, I., Becouse, J., Mazza, S., Montandon-Clerc, M., & Hu, X. (2015). Chemoselective Alkene Hydrosilylation Catalyzed by Nickel Pincer Complexes. Angewandte Chemie International Edition, 54(48), 14523-14526. doi:10.1002/anie.201507829
Buslov, I., Becouse, J., Mazza, S., Montandon-Clerc, M., & Hu, X. (2015). Chemoselective Alkene Hydrosilylation Catalyzed by Nickel Pincer Complexes. Angewandte Chemie, 127(48), 14731-14734. doi:10.1002/ange.201507829
Greenhalgh, M. D., Frank, D. J., & Thomas, S. P. (2014). Iron-Catalysed Chemo-, Regio-, and Stereoselective Hydrosilylation of Alkenes and Alkynes using a Bench-Stable Iron(II) Pre-Catalyst. Advanced Synthesis & Catalysis, 356(2-3), 584-590. doi:10.1002/adsc.201300827
K. Brandstadt S. Cook B. T. Nguyen A. Surgenor R. Taylor M. Tzou 2013
Docherty, J. H., Peng, J., Dominey, A. P., & Thomas, S. P. (2017). Activation and discovery of earth-abundant metal catalysts using sodium tert-butoxide. Nature Chemistry, 9(6), 595-600. doi:10.1038/nchem.2697
Noda, D., Tahara, A., Sunada, Y., & Nagashima, H. (2016). Non-Precious-Metal Catalytic Systems Involving Iron or Cobalt Carboxylates and Alkyl Isocyanides for Hydrosilylation of Alkenes with Hydrosiloxanes. Journal of the American Chemical Society, 138(8), 2480-2483. doi:10.1021/jacs.5b11311
Schuster, C. H., Diao, T., Pappas, I., & Chirik, P. J. (2016). Bench-Stable, Substrate-Activated Cobalt Carboxylate Pre-Catalysts for Alkene Hydrosilylation with Tertiary Silanes. ACS Catalysis, 6(4), 2632-2636. doi:10.1021/acscatal.6b00304
Constable, E. C., Housecroft, C. E., Jullien, V., Neuburger, M., & Schaffner, S. (2006). Structural characterisation of a 1:1 cobalt(II) – 2,2′:6′,2″-Terpyridine complex. Inorganic Chemistry Communications, 9(5), 504-506. doi:10.1016/j.inoche.2006.01.018
Indumathy, R., Radhika, S., Kanthimathi, M., Weyhermuller, T., & Unni Nair, B. (2007). Cobalt complexes of terpyridine ligand: Crystal structure and photocleavage of DNA. Journal of Inorganic Biochemistry, 101(3), 434-443. doi:10.1016/j.jinorgbio.2006.11.002
Mizuno, K., Imamura, S., & Lunsford, J. H. (1984). An EPR study of [CoIIL2]2+, [CoIILL’]2+ and [CoIIILL’O2-]2+ (L = 2,2’,2"-terpyridine; L’ = 2,2’-bipyridine) complexes in zeolite Y. Inorganic Chemistry, 23(22), 3510-3514. doi:10.1021/ic00190a015
Cibian, M., & Hanan, G. S. (2015). Geometry and Spin Change at the Heart of a Cobalt(II) Complex: A Special Case of Solvatomorphism. Chemistry - A European Journal, 21(26), 9474-9481. doi:10.1002/chem.201500852
G. R. Eaton S. S. Eaton D. P. Barr R. T. Weber Quantitative EPR Springer-Verlag Wien Austria 2010
Evans, D. F. (1959). 400. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. Journal of the Chemical Society (Resumed), 2003. doi:10.1039/jr9590002003
Evans, D. F., Fazakerley, G. V., & Phillips, R. F. (1971). Organometallic compounds of bivalent europium, ytterbium, and samarium. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1931. doi:10.1039/j19710001931
C. W. Garland J. W. Nibler D. P. Shoemaker Experiments in Physical Chemistry 2003
Sprengers, J. W., de Greef, M., Duin, M. A., & Elsevier, C. J. (2003). Stable Platinum(0) Catalysts for Catalytic Hydrosilylation of Styrene and Synthesis of [Pt(Ar-bian)(η2-alkene)] Complexes. European Journal of Inorganic Chemistry, 2003(20), 3811-3819. doi:10.1002/ejic.200300088
Bleith, T., & Gade, L. H. (2016). Mechanism of the Iron(II)-Catalyzed Hydrosilylation of Ketones: Activation of Iron Carboxylate Precatalysts and Reaction Pathways of the Active Catalyst. Journal of the American Chemical Society, 138(14), 4972-4983. doi:10.1021/jacs.6b02173
Park, E. S., Ro, H. W., Nguyen, C. V., Jaffe, R. L., & Yoon, D. Y. (2008). Infrared Spectroscopy Study of Microstructures of Poly(silsesquioxane)s. Chemistry of Materials, 20(4), 1548-1554. doi:10.1021/cm071575z
[-]