- -

Cobalt Catalysts for Alkene Hydrosilylation under Aerobic Conditions without Dry Solvents or Additives

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Cobalt Catalysts for Alkene Hydrosilylation under Aerobic Conditions without Dry Solvents or Additives

Mostrar el registro completo del ítem

Gutiérrez-Tarriño, S.; Concepción Heydorn, P.; Oña-Burgos, P. (2018). Cobalt Catalysts for Alkene Hydrosilylation under Aerobic Conditions without Dry Solvents or Additives. European Journal of Inorganic Chemistry. 45:4867-4874. https://doi.org/10.1002/ejic.201801068

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145196

Ficheros en el ítem

Metadatos del ítem

Título: Cobalt Catalysts for Alkene Hydrosilylation under Aerobic Conditions without Dry Solvents or Additives
Autor: Gutiérrez-Tarriño, Silvia Concepción Heydorn, Patricia Oña-Burgos, Pascual
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Alkene hydrosilylation is typically performed with Pt catalysts, but inexpensive base-metal catalysts would be preferred. Here, we report a simple method for the use of air-stable cobalt catalysts for anti-Markovnikov ...[+]
Palabras clave: Homogeneous catalysis , Cobalt , Alkenes , Hydrosilylation , Reaction mechanisms
Derechos de uso: Reserva de todos los derechos
Fuente:
European Journal of Inorganic Chemistry. (issn: 1434-1948 )
DOI: 10.1002/ejic.201801068
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/ejic.201801068
Código del Proyecto:
info:eu-repo/grantAgreement/MECD//FPU16%2F02117/ES/FPU16%2F02117/
info:eu-repo/grantAgreement/MINECO//RYC-2014-16620/ES/RYC-2014-16620/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
Program Severo Ochoa SEV-2016-0683 is gratefully acknowledged. S. G. T. and P. O.-B. thank MINECO for a FPU Ph.D. fellowship FPU16/02117 and a Ramon y Cajal contract RYC-2014-16620, respectively. Authors would like to thank ...[+]
Tipo: Artículo

References

Marciniec, B. (s. f.). Hydrosilylation of Alkenes and Their Derivatives. Advances In Silicon Science, 3-51. doi:10.1007/978-1-4020-8172-9_1

Nakajima, Y., & Shimada, S. (2015). Hydrosilylation reaction of olefins: recent advances and perspectives. RSC Advances, 5(26), 20603-20616. doi:10.1039/c4ra17281g

Sun, J., & Deng, L. (2015). Cobalt Complex-Catalyzed Hydrosilylation of Alkenes and Alkynes. ACS Catalysis, 6(1), 290-300. doi:10.1021/acscatal.5b02308 [+]
Marciniec, B. (s. f.). Hydrosilylation of Alkenes and Their Derivatives. Advances In Silicon Science, 3-51. doi:10.1007/978-1-4020-8172-9_1

Nakajima, Y., & Shimada, S. (2015). Hydrosilylation reaction of olefins: recent advances and perspectives. RSC Advances, 5(26), 20603-20616. doi:10.1039/c4ra17281g

Sun, J., & Deng, L. (2015). Cobalt Complex-Catalyzed Hydrosilylation of Alkenes and Alkynes. ACS Catalysis, 6(1), 290-300. doi:10.1021/acscatal.5b02308

Wang, C., Teo, W. J., & Ge, S. (2016). Cobalt-Catalyzed Regiodivergent Hydrosilylation of Vinylarenes and Aliphatic Alkenes: Ligand- and Silane-Dependent Regioselectivities. ACS Catalysis, 7(1), 855-863. doi:10.1021/acscatal.6b02518

Markó, I. E., Stérin, S., Buisine, O., Mignani, G., Branlard, P., Tinant, B., & Declercq, J.-P. (2002). Selective and Efficient Platinum(0)-Carbene Complexes As Hydrosilylation Catalysts. Science, 298(5591), 204-206. doi:10.1126/science.1073338

Markó, I. E., Stérin, S., Buisine, O., Berthon, G., Michaud, G., Tinant, B., & Declercq, J.-P. (2004). Highly Active and Selective Platinum(0)-Carbene Complexes. Efficient, Catalytic Hydrosilylation of Functionalised Olefins. Advanced Synthesis & Catalysis, 346(12), 1429-1434. doi:10.1002/adsc.200404048

Marciniec, B., Posała, K., Kownacki, I., Kubicki, M., & Taylor, R. (2012). New Bis(dialkynyldisiloxane)triplatinum(0) Cluster: Synthesis, Structure, and Catalytic Activity in Olefin-Hydrosilylation Reactions. ChemCatChem, 4(12), 1935-1937. doi:10.1002/cctc.201200319

Bernhammer, J. C., & Huynh, H. V. (2013). Platinum(II) Complexes with Thioether-Functionalized Benzimidazolin-2-ylidene Ligands: Synthesis, Structural Characterization, and Application in Hydroelementation Reactions. Organometallics, 33(1), 172-180. doi:10.1021/om400929t

2003 minerals.usgs.gov/minerals/pubs/commodity/platinum/

Du, X., & Huang, Z. (2017). Advances in Base-Metal-Catalyzed Alkene Hydrosilylation. ACS Catalysis, 7(2), 1227-1243. doi:10.1021/acscatal.6b02990

Tondreau, A. M., Atienza, C. C. H., Weller, K. J., Nye, S. A., Lewis, K. M., Delis, J. G. P., & Chirik, P. J. (2012). Iron Catalysts for Selective Anti-Markovnikov Alkene Hydrosilylation Using Tertiary Silanes. Science, 335(6068), 567-570. doi:10.1126/science.1214451

Mitchener, J. C., & Wrighton, M. S. (1981). Photogeneration of very active homogeneous catalysts using laser light excitation of iron carbonyl precursors. Journal of the American Chemical Society, 103(4), 975-977. doi:10.1021/ja00394a060

Chalk, A. J., & Harrod, J. F. (1967). Homogeneous Catalysis. IV. Some Reactions of Silicon Hydrides in the Presence of Cobalt Carbonyls. Journal of the American Chemical Society, 89(7), 1640-1647. doi:10.1021/ja00983a020

A. Schroeder, M., & S. Wrighton, M. (1977). Pentacarbonyliron(0) photocatalyzed reactions of trialkylsilanes with alkenes. Journal of Organometallic Chemistry, 128(3), 345-358. doi:10.1016/s0022-328x(00)92207-1

Reichel, C. L., & Wrighton, M. S. (1980). Photochemistry of cobalt carbonyl complexes having a cobalt-silicon bond and its importance in activation of catalysis. Inorganic Chemistry, 19(12), 3858-3860. doi:10.1021/ic50214a058

Seitz, F., & Wrighton, M. S. (1988). Photochemical Reaction of [(CO)4Co(SiEt3)] with Ethylene: Implications for Cobaltcarbonyl-Catalyzed Hydrosilation of Alkenes. Angewandte Chemie International Edition in English, 27(2), 289-291. doi:10.1002/anie.198802891

Seitz, F., & Wrighton, M. S. (1988). Die photochemische Reaktion von [(CO)4Co(SiEt3)] mit Ethylen und ihre Bedeutung für die Katalyse der Hydrosilylierung von Alkenen durch Carbonylcobalt-Komplexe. Angewandte Chemie, 100(2), 281-283. doi:10.1002/ange.19881000217

Hojilla Atienza, C. C., Tondreau, A. M., Weller, K. J., Lewis, K. M., Cruse, R. W., Nye, S. A., … Chirik, P. J. (2012). High-Selectivity Bis(imino)pyridine Iron Catalysts for the Hydrosilylation of 1,2,4-Trivinylcyclohexane. ACS Catalysis, 2(10), 2169-2172. doi:10.1021/cs300584b

Bart, S. C., Lobkovsky, E., & Chirik, P. J. (2004). Preparation and Molecular and Electronic Structures of Iron(0) Dinitrogen and Silane Complexes and Their Application to Catalytic Hydrogenation and Hydrosilation. Journal of the American Chemical Society, 126(42), 13794-13807. doi:10.1021/ja046753t

Wu, J. Y., Stanzl, B. N., & Ritter, T. (2010). A Strategy for the Synthesis of Well-Defined Iron Catalysts and Application to Regioselective Diene Hydrosilylation. Journal of the American Chemical Society, 132(38), 13214-13216. doi:10.1021/ja106853y

Marciniec, B., Kownacka, A., Kownacki, I., & Taylor, R. (2014). Hydrosilylation cross-linking of silicon fluids by a novel class of iron(0) catalysts. Applied Catalysis A: General, 486, 230-238. doi:10.1016/j.apcata.2014.08.037

Chen, J., Cheng, B., Cao, M., & Lu, Z. (2015). Iron-Catalyzed Asymmetric Hydrosilylation of 1,1-Disubstituted Alkenes. Angewandte Chemie International Edition, 54(15), 4661-4664. doi:10.1002/anie.201411884

Chen, J., Cheng, B., Cao, M., & Lu, Z. (2015). Iron-Catalyzed Asymmetric Hydrosilylation of 1,1-Disubstituted Alkenes. Angewandte Chemie, 127(15), 4744-4747. doi:10.1002/ange.201411884

Cheng, B., Liu, W., & Lu, Z. (2018). Iron-Catalyzed Highly Enantioselective Hydrosilylation of Unactivated Terminal Alkenes. Journal of the American Chemical Society, 140(15), 5014-5017. doi:10.1021/jacs.8b01638

Atienza, C. C. H., Diao, T., Weller, K. J., Nye, S. A., Lewis, K. M., Delis, J. G. P., … Chirik, P. J. (2014). Bis(imino)pyridine Cobalt-Catalyzed Dehydrogenative Silylation of Alkenes: Scope, Mechanism, and Origins of Selective Allylsilane Formation. Journal of the American Chemical Society, 136(34), 12108-12118. doi:10.1021/ja5060884

Mo, Z., Liu, Y., & Deng, L. (2013). Anchoring of Silyl Donors on a N-Heterocyclic Carbene through the Cobalt-Mediated Silylation of Benzylic CH Bonds. Angewandte Chemie, 125(41), 11045-11049. doi:10.1002/ange.201304596

Chen, C., Hecht, M. B., Kavara, A., Brennessel, W. W., Mercado, B. Q., Weix, D. J., & Holland, P. L. (2015). Rapid, Regioconvergent, Solvent-Free Alkene Hydrosilylation with a Cobalt Catalyst. Journal of the American Chemical Society, 137(41), 13244-13247. doi:10.1021/jacs.5b08611

Lipschutz, M. I., & Tilley, T. D. (2012). Synthesis and reactivity of a conveniently prepared two-coordinate bis(amido) nickel(ii) complex. Chemical Communications, 48(57), 7146. doi:10.1039/c2cc32974c

Buslov, I., Becouse, J., Mazza, S., Montandon-Clerc, M., & Hu, X. (2015). Chemoselective Alkene Hydrosilylation Catalyzed by Nickel Pincer Complexes. Angewandte Chemie International Edition, 54(48), 14523-14526. doi:10.1002/anie.201507829

Buslov, I., Becouse, J., Mazza, S., Montandon-Clerc, M., & Hu, X. (2015). Chemoselective Alkene Hydrosilylation Catalyzed by Nickel Pincer Complexes. Angewandte Chemie, 127(48), 14731-14734. doi:10.1002/ange.201507829

Greenhalgh, M. D., Frank, D. J., & Thomas, S. P. (2014). Iron-Catalysed Chemo-, Regio-, and Stereoselective Hydrosilylation of Alkenes and Alkynes using a Bench-Stable Iron(II) Pre-Catalyst. Advanced Synthesis & Catalysis, 356(2-3), 584-590. doi:10.1002/adsc.201300827

K. Brandstadt S. Cook B. T. Nguyen A. Surgenor R. Taylor M. Tzou 2013

Docherty, J. H., Peng, J., Dominey, A. P., & Thomas, S. P. (2017). Activation and discovery of earth-abundant metal catalysts using sodium tert-butoxide. Nature Chemistry, 9(6), 595-600. doi:10.1038/nchem.2697

Noda, D., Tahara, A., Sunada, Y., & Nagashima, H. (2016). Non-Precious-Metal Catalytic Systems Involving Iron or Cobalt Carboxylates and Alkyl Isocyanides for Hydrosilylation of Alkenes with Hydrosiloxanes. Journal of the American Chemical Society, 138(8), 2480-2483. doi:10.1021/jacs.5b11311

Schuster, C. H., Diao, T., Pappas, I., & Chirik, P. J. (2016). Bench-Stable, Substrate-Activated Cobalt Carboxylate Pre-Catalysts for Alkene Hydrosilylation with Tertiary Silanes. ACS Catalysis, 6(4), 2632-2636. doi:10.1021/acscatal.6b00304

Constable, E. C., Housecroft, C. E., Jullien, V., Neuburger, M., & Schaffner, S. (2006). Structural characterisation of a 1:1 cobalt(II) – 2,2′:6′,2″-Terpyridine complex. Inorganic Chemistry Communications, 9(5), 504-506. doi:10.1016/j.inoche.2006.01.018

Indumathy, R., Radhika, S., Kanthimathi, M., Weyhermuller, T., & Unni Nair, B. (2007). Cobalt complexes of terpyridine ligand: Crystal structure and photocleavage of DNA. Journal of Inorganic Biochemistry, 101(3), 434-443. doi:10.1016/j.jinorgbio.2006.11.002

Mizuno, K., Imamura, S., & Lunsford, J. H. (1984). An EPR study of [CoIIL2]2+, [CoIILL’]2+ and [CoIIILL’O2-]2+ (L = 2,2’,2"-terpyridine; L’ = 2,2’-bipyridine) complexes in zeolite Y. Inorganic Chemistry, 23(22), 3510-3514. doi:10.1021/ic00190a015

Cibian, M., & Hanan, G. S. (2015). Geometry and Spin Change at the Heart of a Cobalt(II) Complex: A Special Case of Solvatomorphism. Chemistry - A European Journal, 21(26), 9474-9481. doi:10.1002/chem.201500852

G. R. Eaton S. S. Eaton D. P. Barr R. T. Weber Quantitative EPR Springer-Verlag Wien Austria 2010

Evans, D. F. (1959). 400. The determination of the paramagnetic susceptibility of substances in solution by nuclear magnetic resonance. Journal of the Chemical Society (Resumed), 2003. doi:10.1039/jr9590002003

Evans, D. F., Fazakerley, G. V., & Phillips, R. F. (1971). Organometallic compounds of bivalent europium, ytterbium, and samarium. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1931. doi:10.1039/j19710001931

C. W. Garland J. W. Nibler D. P. Shoemaker Experiments in Physical Chemistry 2003

Sprengers, J. W., de Greef, M., Duin, M. A., & Elsevier, C. J. (2003). Stable Platinum(0) Catalysts for Catalytic Hydrosilylation of Styrene and Synthesis of [Pt(Ar-bian)(η2-alkene)] Complexes. European Journal of Inorganic Chemistry, 2003(20), 3811-3819. doi:10.1002/ejic.200300088

Bleith, T., & Gade, L. H. (2016). Mechanism of the Iron(II)-Catalyzed Hydrosilylation of Ketones: Activation of Iron Carboxylate Precatalysts and Reaction Pathways of the Active Catalyst. Journal of the American Chemical Society, 138(14), 4972-4983. doi:10.1021/jacs.6b02173

Park, E. S., Ro, H. W., Nguyen, C. V., Jaffe, R. L., & Yoon, D. Y. (2008). Infrared Spectroscopy Study of Microstructures of Poly(silsesquioxane)s. Chemistry of Materials, 20(4), 1548-1554. doi:10.1021/cm071575z

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem