Mostrar el registro sencillo del ítem
dc.contributor.author | Garzon, Raquel | es_ES |
dc.contributor.author | Hernando Hernando, Mª Isabel | es_ES |
dc.contributor.author | Llorca Martínez, Mª Empar | es_ES |
dc.contributor.author | Molina Rosell, Maria Cristina | es_ES |
dc.date.accessioned | 2020-06-12T03:33:40Z | |
dc.date.available | 2020-06-12T03:33:40Z | |
dc.date.issued | 2018-11 | es_ES |
dc.identifier.issn | 0022-5142 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146173 | |
dc.description.abstract | [EN] BACKGROUNDMuch research has been done to explain the action of emulsifiers during breadmaking, but there is still plenty unknown to elucidate their functionality despite their diverse chemical structure. The aim of the present study was to provide some light on the role of emulsifiers on air incorporation into the dough and gas bubbles progress during baking and their relationship with bread features. Emulsifiers like diacetyl tartaric acid ester of monoglycerides (DATEM), sodium stearoyl lactylate (SSL), distilled monoglyceride (DMG-45 and DMG-75), lecithin and polyglycerol esters of fatty acids (PGEF) were tested in very hydrated doughs. RESULTSEmulsifiers increase the maximum dough volume during proofing. Emulsifiers increase the number of bubbles incorporated during mixing, observing higher number of bubbles, particularly with PGEF. Major changes in dough occurred at 70K when bubble size augmented, becoming more heterogeneous. DMG-75 produced the biggest bubbles. As a consequence, emulsifiers tend to increase the number of gas cells with lower size in the bread crumb, but led to greater crumb firmness, which suggested different interactions between emulsifiers and gluten, affecting protein polymerization during baking. CONCLUSIONThe progress of the bubbles during baking allowed the differentiation of emulsifiers, which could explain their performance in breadmaking. (c) 2018 Society of Chemical Industry | es_ES |
dc.description.sponsorship | Authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness (Project AGL2014-52928-C2-1-R), the European Regional Development Fund (FEDER) and Generalitat Valenciana (Project Prometeo 2017/189). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Journal of the Science of Food and Agriculture | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Emulsifier | es_ES |
dc.subject | Image analysis | es_ES |
dc.subject | Bubble | es_ES |
dc.subject | Dough aeration | es_ES |
dc.subject | Bread | es_ES |
dc.subject | Crumb | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Understanding the effect of emulsifiers on bread aeration during breadmaking | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/jsfa.9094 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2014-52928-C2-1-R/ES/MODIFICACION ENZIMATICA DE MATRICES HIDROCARBONADAS DIRIGIDA A LA MEJORA NUTRICIONAL DE ALIMENTOS HORNEADOS SIN GLUTEN/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2017%2F189/ES/2017-2021 LINCE. Innovation, Quality and Development of Cereal Based Foods (Leading INnovation in CEreals, LINCE)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Garzon, R.; Hernando Hernando, MI.; Llorca Martínez, ME.; Molina Rosell, MC. (2018). Understanding the effect of emulsifiers on bread aeration during breadmaking. Journal of the Science of Food and Agriculture. 98(14):5494-5502. https://doi.org/10.1002/jsfa.9094 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/jsfa.9094 | es_ES |
dc.description.upvformatpinicio | 5494 | es_ES |
dc.description.upvformatpfin | 5502 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 98 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.pasarela | S\368801 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Rosell, C. M., & Garzon, R. (2015). Chemical Composition of Bakery Products. Handbook of Food Chemistry, 191-224. doi:10.1007/978-3-642-36605-5_22 | es_ES |
dc.description.references | Chin, N. L., & Campbell, G. M. (2005). Dough aeration and rheology: Part 1. Effects of mixing speed and headspace pressure on mechanical development of bread dough. Journal of the Science of Food and Agriculture, 85(13), 2184-2193. doi:10.1002/jsfa.2236 | es_ES |
dc.description.references | Trinh, L., Lowe, T., Campbell, G. M., Withers, P. J., & Martin, P. J. (2015). Effect of sugar on bread dough aeration during mixing. Journal of Food Engineering, 150, 9-18. doi:10.1016/j.jfoodeng.2014.10.020 | es_ES |
dc.description.references | Peighambardoust, S. H., Fallah, E., Hamer, R. J., & van der Goot, A. J. (2010). Aeration of bread dough influenced by different way of processing. Journal of Cereal Science, 51(1), 89-95. doi:10.1016/j.jcs.2009.10.002 | es_ES |
dc.description.references | Chin, N. L., Campbell, G. M., & Thompson, F. (2005). Characterisation of bread doughs with different densities, salt contents and water levels using microwave power transmission measurements. Journal of Food Engineering, 70(2), 211-217. doi:10.1016/j.jfoodeng.2004.09.024 | es_ES |
dc.description.references | Mehta, K. L., Scanlon, M. G., Sapirstein, H. D., & Page, J. H. (2009). Ultrasonic Investigation of the Effect of Vegetable Shortening and Mixing Time on the Mechanical Properties of Bread Dough. Journal of Food Science, 74(9), E455-E461. doi:10.1111/j.1750-3841.2009.01346.x | es_ES |
dc.description.references | Bellido, G. G., Scanlon, M. G., & Page, J. H. (2009). Measurement of dough specific volume in chemically leavened dough systems. Journal of Cereal Science, 49(2), 212-218. doi:10.1016/j.jcs.2008.10.002 | es_ES |
dc.description.references | Moayedallaie, S., Mirzaei, M., & Paterson, J. (2010). Bread improvers: Comparison of a range of lipases with a traditional emulsifier. Food Chemistry, 122(3), 495-499. doi:10.1016/j.foodchem.2009.10.033 | es_ES |
dc.description.references | Van Steertegem, B., Pareyt, B., Brijs, K., & Delcour, J. A. (2013). Impact of mixing time and sodium stearoyl lactylate on gluten polymerization during baking of wheat flour dough. Food Chemistry, 141(4), 4179-4185. doi:10.1016/j.foodchem.2013.07.017 | es_ES |
dc.description.references | Gómez, A. V., Buchner, D., Tadini, C. C., Añón, M. C., & Puppo, M. C. (2012). Emulsifiers: Effects on Quality of Fibre-Enriched Wheat Bread. Food and Bioprocess Technology, 6(5), 1228-1239. doi:10.1007/s11947-011-0772-7 | es_ES |
dc.description.references | Aamodt, A., Magnus, E. M., & FAERGESTAD, E. M. (2003). Effect of Flour Quality, Ascorbic Acid, and DATEM on Dough Rheological Parameters and Hearth Loaves Characteristics. Journal of Food Science, 68(7), 2201-2210. doi:10.1111/j.1365-2621.2003.tb05747.x | es_ES |
dc.description.references | Farvili, N., Walker, C. E., & Qarooni, J. (1995). Effects of Emulsifiers on Pita Bread Quality. Journal of Cereal Science, 21(3), 301-308. doi:10.1006/jcrs.1995.0033 | es_ES |
dc.description.references | Gómez, M., del Real, S., Rosell, C. M., Ronda, F., Blanco, C. A., & Caballero., P. A. (2004). Functionality of different emulsifiers on the performance of breadmaking and wheat bread quality. European Food Research and Technology, 219(2), 145-150. doi:10.1007/s00217-004-0937-y | es_ES |
dc.description.references | Ravi, R., Manohar, R. S., & Rao, P. H. (2000). Influence of additives on the rheological characteristics and baking quality of wheat flours. European Food Research and Technology, 210(3), 202-208. doi:10.1007/pl00005512 | es_ES |
dc.description.references | Rodríguez-García, J., Salvador, A., & Hernando, I. (2013). Replacing Fat and Sugar with Inulin in Cakes: Bubble Size Distribution, Physical and Sensory Properties. Food and Bioprocess Technology, 7(4), 964-974. doi:10.1007/s11947-013-1066-z | es_ES |
dc.description.references | Garzón, R., Rosell, C. M., Malvar, R. A., & Revilla, P. (2017). Diversity among maize populations from Spain and the United States for dough rheology and gluten-free breadmaking performance. International Journal of Food Science & Technology, 52(4), 1000-1008. doi:10.1111/ijfs.13364 | es_ES |
dc.description.references | Gómez, A. V., Ferrer, E., Añón, M. C., & Puppo, M. C. (2012). Analysis of soluble proteins/aggregates derived from gluten-emulsifiers systems. Food Research International, 46(1), 62-68. doi:10.1016/j.foodres.2011.12.007 | es_ES |
dc.description.references | Ferrer, E. G., Gómez, A. V., Añón, M. C., & Puppo, M. C. (2011). Structural changes in gluten protein structure after addition of emulsifier. A Raman spectroscopy study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(1), 278-281. doi:10.1016/j.saa.2011.02.022 | es_ES |
dc.description.references | Turbin-Orger, A., Boller, E., Chaunier, L., Chiron, H., Della Valle, G., & Réguerre, A.-L. (2012). Kinetics of bubble growth in wheat flour dough during proofing studied by computed X-ray micro-tomography. Journal of Cereal Science, 56(3), 676-683. doi:10.1016/j.jcs.2012.08.008 | es_ES |
dc.description.references | Babin, P., Della Valle, G., Chiron, H., Cloetens, P., Hoszowska, J., Pernot, P., … Dendievel, R. (2006). Fast X-ray tomography analysis of bubble growth and foam setting during breadmaking. Journal of Cereal Science, 43(3), 393-397. doi:10.1016/j.jcs.2005.12.002 | es_ES |
dc.description.references | Kokelaar, J. J., Garritsen, J. A., & Prins, A. (1995). Surface rheological properties of sodium stearoyl-2-lactylate (SSL) and diacetyl tartaric esters of mono (and di) glyceride (DATEM) surfactants after a mechanical surface treatment in relation to their bread improving abilities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 95(1), 69-77. doi:10.1016/0927-7757(94)03009-o | es_ES |
dc.description.references | Chakrabarti-Bell, S., Wang, S., & Siddique, K. H. M. (2014). Flour quality and disproportionation of bubbles in bread doughs. Food Research International, 64, 587-597. doi:10.1016/j.foodres.2014.07.025 | es_ES |
dc.description.references | McClements, D. J. (2015). Food Emulsions. doi:10.1201/b18868 | es_ES |
dc.description.references | AZIZI, M. H., & RAO, G. V. (2005). Effect of Surfactant Gels on Dough Rheological Characteristics and Quality of Bread. Critical Reviews in Food Science and Nutrition, 44(7-8), 545-552. doi:10.1080/10408690490489288 | es_ES |
dc.description.references | Gomes-Ruffi, C. R., Cunha, R. H. da, Almeida, E. L., Chang, Y. K., & Steel, C. J. (2012). Effect of the emulsifier sodium stearoyl lactylate and of the enzyme maltogenic amylase on the quality of pan bread during storage. LWT, 49(1), 96-101. doi:10.1016/j.lwt.2012.04.014 | es_ES |
dc.description.references | Upadhyay, R., Ghosal, D., & Mehra, A. (2012). Characterization of bread dough: Rheological properties and microstructure. Journal of Food Engineering, 109(1), 104-113. doi:10.1016/j.jfoodeng.2011.09.028 | es_ES |