- -

Proper Generalized Decomposition solutions within a Domain Decomposition strategy

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Proper Generalized Decomposition solutions within a Domain Decomposition strategy

Show full item record

Huerta, A.; Nadal, E.; Chinesta Soria, FJ. (2018). Proper Generalized Decomposition solutions within a Domain Decomposition strategy. International Journal for Numerical Methods in Engineering. 113(13):1972-1994. https://doi.org/10.1002/nme.5729

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146190

Files in this item

Item Metadata

Title: Proper Generalized Decomposition solutions within a Domain Decomposition strategy
Author: Huerta, Antonio Nadal, Enrique Chinesta Soria, Francisco Jose
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
[EN] Domain decomposition strategies and proper generalized decomposition are efficiently combined to obtain a fast evaluation of the solution approximation in parameterized elliptic problems with complex geometries. The ...[+]
Subjects: Domain decomposition , Parameterized solutions , Proper generalized decomposition , Reduced-order models
Copyrigths: Reserva de todos los derechos
Source:
International Journal for Numerical Methods in Engineering. (issn: 0029-5981 )
DOI: 10.1002/nme.5729
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/nme.5729
Project ID:
info:eu-repo/grantAgreement/EC/H2020/675919/EU/Empowered decision-making in simulation-based engineering: Advanced Model Reduction for real-time, inverse and optimization in industrial problems/
MINECO/DPI2017-85139-C2-2-R
GC/2014SGR1471
Description: "This is the peer reviewed version of the following article: Huerta, Antonio, Enrique Nadal, and Francisco Chinesta. 2018. Proper Generalized Decomposition Solutions within a Domain Decomposition Strategy. International Journal for Numerical Methods in Engineering 113 (13). Wiley: 1972 94. doi:10.1002/nme.5729, which has been published in final form at https://doi.org/10.1002/nme.5729. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Thanks:
European Commission, Grant/Award Number: MSCA ITN-ETN 675919; ESI group, Grant/Award Number: ENSAM ESI Chair; Spanish Ministry of Economy and Competitiveness, Grant/Award Number: DPI2017-85139-C2-2-R; Generalitat de ...[+]
Type: Artículo

References

Ammar, A., Mokdad, B., Chinesta, F., & Keunings, R. (2006). A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Journal of Non-Newtonian Fluid Mechanics, 139(3), 153-176. doi:10.1016/j.jnnfm.2006.07.007

Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., … Huerta, A. (2013). PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Archives of Computational Methods in Engineering, 20(1), 31-59. doi:10.1007/s11831-013-9080-x

Chinesta, F., Cueto, E., & Huerta, A. (2014). PGD for solving multidimensional and parametric models. CISM International Centre for Mechanical Sciences, 27-89. doi:10.1007/978-3-7091-1794-1_2 [+]
Ammar, A., Mokdad, B., Chinesta, F., & Keunings, R. (2006). A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Journal of Non-Newtonian Fluid Mechanics, 139(3), 153-176. doi:10.1016/j.jnnfm.2006.07.007

Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., … Huerta, A. (2013). PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Archives of Computational Methods in Engineering, 20(1), 31-59. doi:10.1007/s11831-013-9080-x

Chinesta, F., Cueto, E., & Huerta, A. (2014). PGD for solving multidimensional and parametric models. CISM International Centre for Mechanical Sciences, 27-89. doi:10.1007/978-3-7091-1794-1_2

Chinesta, F., Keunings, R., & Leygue, A. (2014). The Proper Generalized Decomposition for Advanced Numerical Simulations. SpringerBriefs in Applied Sciences and Technology. doi:10.1007/978-3-319-02865-1

González, D., Ammar, A., Chinesta, F., & Cueto, E. (2009). Recent advances on the use of separated representations. International Journal for Numerical Methods in Engineering, n/a-n/a. doi:10.1002/nme.2710

Ghnatios, C., Chinesta, F., & Binetruy, C. (2013). 3D Modeling of squeeze flows occurring in composite laminates. International Journal of Material Forming, 8(1), 73-83. doi:10.1007/s12289-013-1149-4

Bognet, B., Bordeu, F., Chinesta, F., Leygue, A., & Poitou, A. (2012). Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Computer Methods in Applied Mechanics and Engineering, 201-204, 1-12. doi:10.1016/j.cma.2011.08.025

Bognet, B., Leygue, A., & Chinesta, F. (2014). Separated representations of 3D elastic solutions in shell geometries. Advanced Modeling and Simulation in Engineering Sciences, 1(1), 4. doi:10.1186/2213-7467-1-4

Ibáñez, R., Abisset-Chavanne, E., Chinesta, F., & Huerta, A. (2016). Simulating squeeze flows in multiaxial laminates: towards fully 3D mixed formulations. International Journal of Material Forming, 10(5), 653-669. doi:10.1007/s12289-016-1309-4

Toselli, A., & Widlund, O. B. (2005). Domain Decomposition Methods — Algorithms and Theory. Springer Series in Computational Mathematics. doi:10.1007/b137868

Dolean, V., Jolivet, P., & Nataf, F. (2015). An Introduction to Domain Decomposition Methods. doi:10.1137/1.9781611974065

Nazeer, S. M., Bordeu, F., Leygue, A., & Chinesta, F. (2014). Arlequin based PGD domain decomposition. Computational Mechanics, 54(5), 1175-1190. doi:10.1007/s00466-014-1048-7

Krause, R. H., & Wohlmuth, B. I. (2002). A Dirichlet-Neumann type algorithm for contact problems with friction. Computing and Visualization in Science, 5(3), 139-148. doi:10.1007/s00791-002-0096-2

Farhat, C., & Roux, F.-X. (1991). A method of finite element tearing and interconnecting and its parallel solution algorithm. International Journal for Numerical Methods in Engineering, 32(6), 1205-1227. doi:10.1002/nme.1620320604

Nitsche, J. (1971). Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 36(1), 9-15. doi:10.1007/bf02995904

Freud J Stenberg R On weakly imposed boundary conditions for second order problems 1995 Venice, Italy

Stenberg, R. (1995). On some techniques for approximating boundary conditions in the finite element method. Journal of Computational and Applied Mathematics, 63(1-3), 139-148. doi:10.1016/0377-0427(95)00057-7

Becker, R., Hansbo, P., & Stenberg, R. (2003). A finite element method for domain decomposition with non-matching grids. ESAIM: Mathematical Modelling and Numerical Analysis, 37(2), 209-225. doi:10.1051/m2an:2003023

Iapichino, L., Quarteroni, A., & Rozza, G. (2012). A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Computer Methods in Applied Mechanics and Engineering, 221-222, 63-82. doi:10.1016/j.cma.2012.02.005

Eftang, J. L., & Patera, A. T. (2013). Port reduction in parametrized component static condensation: approximation and a posteriori error estimation. International Journal for Numerical Methods in Engineering, 96(5), 269-302. doi:10.1002/nme.4543

Eftang, J. L., & Patera, A. T. (2014). A port-reduced static condensation reduced basis element method for large component-synthesized structures: approximation and A Posteriori error estimation. Advanced Modeling and Simulation in Engineering Sciences, 1(1), 3. doi:10.1186/2213-7467-1-3

Vallaghé, S., & Patera, A. T. (2014). The Static Condensation Reduced Basis Element Method for a Mixed-Mean Conjugate Heat Exchanger Model. SIAM Journal on Scientific Computing, 36(3), B294-B320. doi:10.1137/120887709

Martini, I., Rozza, G., & Haasdonk, B. (2014). Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system. Advances in Computational Mathematics, 41(5), 1131-1157. doi:10.1007/s10444-014-9396-6

Smetana, K. (2015). A new certification framework for the port reduced static condensation reduced basis element method. Computer Methods in Applied Mechanics and Engineering, 283, 352-383. doi:10.1016/j.cma.2014.09.020

Smetana, K., & Patera, A. T. (2016). Optimal Local Approximation Spaces for Component-Based Static Condensation Procedures. SIAM Journal on Scientific Computing, 38(5), A3318-A3356. doi:10.1137/15m1009603

Iapichino, L., Quarteroni, A., & Rozza, G. (2016). Reduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries. Computers & Mathematics with Applications, 71(1), 408-430. doi:10.1016/j.camwa.2015.12.001

Maday, Y., & Rønquist, E. M. (2002). Journal of Scientific Computing, 17(1/4), 447-459. doi:10.1023/a:1015197908587

Phuong Huynh, D. B., Knezevic, D. J., & Patera, A. T. (2012). A Static condensation Reduced Basis Element method : approximation anda posteriorierror estimation. ESAIM: Mathematical Modelling and Numerical Analysis, 47(1), 213-251. doi:10.1051/m2an/2012022

Ammar, A., Huerta, A., Chinesta, F., Cueto, E., & Leygue, A. (2014). Parametric solutions involving geometry: A step towards efficient shape optimization. Computer Methods in Applied Mechanics and Engineering, 268, 178-193. doi:10.1016/j.cma.2013.09.003

Zlotnik, S., Díez, P., Modesto, D., & Huerta, A. (2015). Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications. International Journal for Numerical Methods in Engineering, 103(10), 737-758. doi:10.1002/nme.4909

Montlaur, A., Fernandez‐Mendez, S., & Huerta, A. (2008). Discontinuous Galerkin methods for the Stokes equations using divergence‐free approximations. International Journal for Numerical Methods in Fluids, 57(9), 1071-1092. doi:10.1002/fld.1716

Ciarlet, P. G. (2002). The Finite Element Method for Elliptic Problems. doi:10.1137/1.9780898719208

Szabó, B., & Babuška, I. (2011). Introduction to Finite Element Analysis. doi:10.1002/9781119993834

Rozza G Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications Separated Representations and PGD-Based Model Reduction CISM International Centre for Mechanical Sciences: Courses and Lectures 554 Vienna Springer 2014 153 227

Ammar, A., Chinesta, F., Diez, P., & Huerta, A. (2010). An error estimator for separated representations of highly multidimensional models. Computer Methods in Applied Mechanics and Engineering, 199(25-28), 1872-1880. doi:10.1016/j.cma.2010.02.012

Maday, Y., & Ronquist, E. M. (2004). The Reduced Basis Element Method: Application to a Thermal Fin Problem. SIAM Journal on Scientific Computing, 26(1), 240-258. doi:10.1137/s1064827502419932

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record