Ammar, A., Mokdad, B., Chinesta, F., & Keunings, R. (2006). A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Journal of Non-Newtonian Fluid Mechanics, 139(3), 153-176. doi:10.1016/j.jnnfm.2006.07.007
Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., … Huerta, A. (2013). PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Archives of Computational Methods in Engineering, 20(1), 31-59. doi:10.1007/s11831-013-9080-x
Chinesta, F., Cueto, E., & Huerta, A. (2014). PGD for solving multidimensional and parametric models. CISM International Centre for Mechanical Sciences, 27-89. doi:10.1007/978-3-7091-1794-1_2
[+]
Ammar, A., Mokdad, B., Chinesta, F., & Keunings, R. (2006). A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Journal of Non-Newtonian Fluid Mechanics, 139(3), 153-176. doi:10.1016/j.jnnfm.2006.07.007
Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., … Huerta, A. (2013). PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Archives of Computational Methods in Engineering, 20(1), 31-59. doi:10.1007/s11831-013-9080-x
Chinesta, F., Cueto, E., & Huerta, A. (2014). PGD for solving multidimensional and parametric models. CISM International Centre for Mechanical Sciences, 27-89. doi:10.1007/978-3-7091-1794-1_2
Chinesta, F., Keunings, R., & Leygue, A. (2014). The Proper Generalized Decomposition for Advanced Numerical Simulations. SpringerBriefs in Applied Sciences and Technology. doi:10.1007/978-3-319-02865-1
González, D., Ammar, A., Chinesta, F., & Cueto, E. (2009). Recent advances on the use of separated representations. International Journal for Numerical Methods in Engineering, n/a-n/a. doi:10.1002/nme.2710
Ghnatios, C., Chinesta, F., & Binetruy, C. (2013). 3D Modeling of squeeze flows occurring in composite laminates. International Journal of Material Forming, 8(1), 73-83. doi:10.1007/s12289-013-1149-4
Bognet, B., Bordeu, F., Chinesta, F., Leygue, A., & Poitou, A. (2012). Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Computer Methods in Applied Mechanics and Engineering, 201-204, 1-12. doi:10.1016/j.cma.2011.08.025
Bognet, B., Leygue, A., & Chinesta, F. (2014). Separated representations of 3D elastic solutions in shell geometries. Advanced Modeling and Simulation in Engineering Sciences, 1(1), 4. doi:10.1186/2213-7467-1-4
Ibáñez, R., Abisset-Chavanne, E., Chinesta, F., & Huerta, A. (2016). Simulating squeeze flows in multiaxial laminates: towards fully 3D mixed formulations. International Journal of Material Forming, 10(5), 653-669. doi:10.1007/s12289-016-1309-4
Toselli, A., & Widlund, O. B. (2005). Domain Decomposition Methods — Algorithms and Theory. Springer Series in Computational Mathematics. doi:10.1007/b137868
Dolean, V., Jolivet, P., & Nataf, F. (2015). An Introduction to Domain Decomposition Methods. doi:10.1137/1.9781611974065
Nazeer, S. M., Bordeu, F., Leygue, A., & Chinesta, F. (2014). Arlequin based PGD domain decomposition. Computational Mechanics, 54(5), 1175-1190. doi:10.1007/s00466-014-1048-7
Krause, R. H., & Wohlmuth, B. I. (2002). A Dirichlet-Neumann type algorithm for contact problems with friction. Computing and Visualization in Science, 5(3), 139-148. doi:10.1007/s00791-002-0096-2
Farhat, C., & Roux, F.-X. (1991). A method of finite element tearing and interconnecting and its parallel solution algorithm. International Journal for Numerical Methods in Engineering, 32(6), 1205-1227. doi:10.1002/nme.1620320604
Nitsche, J. (1971). Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 36(1), 9-15. doi:10.1007/bf02995904
Freud J Stenberg R On weakly imposed boundary conditions for second order problems 1995 Venice, Italy
Stenberg, R. (1995). On some techniques for approximating boundary conditions in the finite element method. Journal of Computational and Applied Mathematics, 63(1-3), 139-148. doi:10.1016/0377-0427(95)00057-7
Becker, R., Hansbo, P., & Stenberg, R. (2003). A finite element method for domain decomposition with non-matching grids. ESAIM: Mathematical Modelling and Numerical Analysis, 37(2), 209-225. doi:10.1051/m2an:2003023
Iapichino, L., Quarteroni, A., & Rozza, G. (2012). A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Computer Methods in Applied Mechanics and Engineering, 221-222, 63-82. doi:10.1016/j.cma.2012.02.005
Eftang, J. L., & Patera, A. T. (2013). Port reduction in parametrized component static condensation: approximation and a posteriori
error estimation. International Journal for Numerical Methods in Engineering, 96(5), 269-302. doi:10.1002/nme.4543
Eftang, J. L., & Patera, A. T. (2014). A port-reduced static condensation reduced basis element method for large component-synthesized structures: approximation and A Posteriori error estimation. Advanced Modeling and Simulation in Engineering Sciences, 1(1), 3. doi:10.1186/2213-7467-1-3
Vallaghé, S., & Patera, A. T. (2014). The Static Condensation Reduced Basis Element Method for a Mixed-Mean Conjugate Heat Exchanger Model. SIAM Journal on Scientific Computing, 36(3), B294-B320. doi:10.1137/120887709
Martini, I., Rozza, G., & Haasdonk, B. (2014). Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system. Advances in Computational Mathematics, 41(5), 1131-1157. doi:10.1007/s10444-014-9396-6
Smetana, K. (2015). A new certification framework for the port reduced static condensation reduced basis element method. Computer Methods in Applied Mechanics and Engineering, 283, 352-383. doi:10.1016/j.cma.2014.09.020
Smetana, K., & Patera, A. T. (2016). Optimal Local Approximation Spaces for Component-Based Static Condensation Procedures. SIAM Journal on Scientific Computing, 38(5), A3318-A3356. doi:10.1137/15m1009603
Iapichino, L., Quarteroni, A., & Rozza, G. (2016). Reduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries. Computers & Mathematics with Applications, 71(1), 408-430. doi:10.1016/j.camwa.2015.12.001
Maday, Y., & Rønquist, E. M. (2002). Journal of Scientific Computing, 17(1/4), 447-459. doi:10.1023/a:1015197908587
Phuong Huynh, D. B., Knezevic, D. J., & Patera, A. T. (2012). A Static condensation Reduced Basis Element method : approximation anda posteriorierror estimation. ESAIM: Mathematical Modelling and Numerical Analysis, 47(1), 213-251. doi:10.1051/m2an/2012022
Ammar, A., Huerta, A., Chinesta, F., Cueto, E., & Leygue, A. (2014). Parametric solutions involving geometry: A step towards efficient shape optimization. Computer Methods in Applied Mechanics and Engineering, 268, 178-193. doi:10.1016/j.cma.2013.09.003
Zlotnik, S., Díez, P., Modesto, D., & Huerta, A. (2015). Proper generalized decomposition of a geometrically parametrized heat problem with geophysical applications. International Journal for Numerical Methods in Engineering, 103(10), 737-758. doi:10.1002/nme.4909
Montlaur, A., Fernandez‐Mendez, S., & Huerta, A. (2008). Discontinuous Galerkin methods for the Stokes equations using divergence‐free approximations. International Journal for Numerical Methods in Fluids, 57(9), 1071-1092. doi:10.1002/fld.1716
Ciarlet, P. G. (2002). The Finite Element Method for Elliptic Problems. doi:10.1137/1.9780898719208
Szabó, B., & Babuška, I. (2011). Introduction to Finite Element Analysis. doi:10.1002/9781119993834
Rozza G Fundamentals of reduced basis method for problems governed by parametrized PDEs and applications Separated Representations and PGD-Based Model Reduction CISM International Centre for Mechanical Sciences: Courses and Lectures 554 Vienna Springer 2014 153 227
Ammar, A., Chinesta, F., Diez, P., & Huerta, A. (2010). An error estimator for separated representations of highly multidimensional models. Computer Methods in Applied Mechanics and Engineering, 199(25-28), 1872-1880. doi:10.1016/j.cma.2010.02.012
Maday, Y., & Ronquist, E. M. (2004). The Reduced Basis Element Method: Application to a Thermal Fin Problem. SIAM Journal on Scientific Computing, 26(1), 240-258. doi:10.1137/s1064827502419932
[-]