Stability and Stabilization of Systems with Time Delay. (2011). IEEE Control Systems, 31(1), 38-65. doi:10.1109/mcs.2010.939135
Fridman, E. (2014). Introduction to Time-Delay Systems. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-09393-2
Watanabe, K., & Ito, M. (1981). A process-model control for linear systems with delay. IEEE Transactions on Automatic Control, 26(6), 1261-1269. doi:10.1109/tac.1981.1102802
[+]
Stability and Stabilization of Systems with Time Delay. (2011). IEEE Control Systems, 31(1), 38-65. doi:10.1109/mcs.2010.939135
Fridman, E. (2014). Introduction to Time-Delay Systems. Systems & Control: Foundations & Applications. doi:10.1007/978-3-319-09393-2
Watanabe, K., & Ito, M. (1981). A process-model control for linear systems with delay. IEEE Transactions on Automatic Control, 26(6), 1261-1269. doi:10.1109/tac.1981.1102802
Astrom, K. J., Hang, C. C., & Lim, B. C. (1994). A new Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control, 39(2), 343-345. doi:10.1109/9.272329
Matausek, M. R., & Micic, A. D. (1996). A modified Smith predictor for controlling a process with an integrator and long dead-time. IEEE Transactions on Automatic Control, 41(8), 1199-1203. doi:10.1109/9.533684
García, P., & Albertos, P. (2008). A new dead-time compensator to control stable and integrating processes with long dead-time. Automatica, 44(4), 1062-1071. doi:10.1016/j.automatica.2007.08.022
Normey-Rico, J. E., & Camacho, E. F. (2009). Unified approach for robust dead-time compensator design. Journal of Process Control, 19(1), 38-47. doi:10.1016/j.jprocont.2008.02.003
Manitius, A., & Olbrot, A. (1979). Finite spectrum assignment problem for systems with delays. IEEE Transactions on Automatic Control, 24(4), 541-552. doi:10.1109/tac.1979.1102124
Artstein, Z. (1982). Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control, 27(4), 869-879. doi:10.1109/tac.1982.1103023
Krstic, M. (2008). Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica, 44(11), 2930-2935. doi:10.1016/j.automatica.2008.04.010
Léchappé, V., Moulay, E., Plestan, F., Glumineau, A., & Chriette, A. (2015). New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica, 52, 179-184. doi:10.1016/j.automatica.2014.11.003
Sanz, R., Garcia, P., & Albertos, P. (2016). Enhanced disturbance rejection for a predictor-based control of LTI systems with input delay. Automatica, 72, 205-208. doi:10.1016/j.automatica.2016.05.019
Basturk, H. I., & Krstic, M. (2015). Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay. Automatica, 58, 131-138. doi:10.1016/j.automatica.2015.05.013
Basturk, H. I. (2017). Cancellation of unmatched biased sinusoidal disturbances for unknown LTI systems in the presence of state delay. Automatica, 76, 169-176. doi:10.1016/j.automatica.2016.10.006
Sanz, R., Garcia, P., Albertos, P., & Zhong, Q.-C. (2016). Robust controller design for input-delayed systems using predictive feedback and an uncertainty estimator. International Journal of Robust and Nonlinear Control, 27(10), 1826-1840. doi:10.1002/rnc.3639
Mondie, S., & Michiels, W. (2003). Finite spectrum assignment of unstable time-delay systems with a safe implementation. IEEE Transactions on Automatic Control, 48(12), 2207-2212. doi:10.1109/tac.2003.820147
Zhong, Q.-C. (2004). On Distributed Delay in Linear Control Laws—Part I: Discrete-Delay Implementations. IEEE Transactions on Automatic Control, 49(11), 2074-2080. doi:10.1109/tac.2004.837531
Zhou, B., Lin, Z., & Duan, G.-R. (2012). Truncated predictor feedback for linear systems with long time-varying input delays. Automatica, 48(10), 2387-2399. doi:10.1016/j.automatica.2012.06.032
Zhou, B., Li, Z.-Y., & Lin, Z. (2013). On higher-order truncated predictor feedback for linear systems with input delay. International Journal of Robust and Nonlinear Control, 24(17), 2609-2627. doi:10.1002/rnc.3012
Besançon G Georges D Benayache Z Asymptotic state prediction for continuous-time systems with delayed input and application to control IEEE 2007 Kos, Greece
Najafi, M., Hosseinnia, S., Sheikholeslam, F., & Karimadini, M. (2013). Closed-loop control of dead time systems via sequential sub-predictors. International Journal of Control, 86(4), 599-609. doi:10.1080/00207179.2012.751627
Léchappé V Moulay E Plestan F Dynamic observation-prediction for LTI systems with a time-varying delay in the input IEEE 2016 Las Vegas, NV
Cacace, F., Conte, F., Germani, A., & Pepe, P. (2016). Stabilization of strict-feedback nonlinear systems with input delay using closed-loop predictors. International Journal of Robust and Nonlinear Control, 26(16), 3524-3540. doi:10.1002/rnc.3517
Mazenc, F., & Malisoff, M. (2017). Stabilization of Nonlinear Time-Varying Systems Through a New Prediction Based Approach. IEEE Transactions on Automatic Control, 62(6), 2908-2915. doi:10.1109/tac.2016.2600500
Guo, L., & Chen, W.-H. (2005). Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. International Journal of Robust and Nonlinear Control, 15(3), 109-125. doi:10.1002/rnc.978
Fridman, E. (2003). Output regulation of nonlinear systems with delay. Systems & Control Letters, 50(2), 81-93. doi:10.1016/s0167-6911(03)00131-2
Isidori, A., & Byrnes, C. I. (1990). Output regulation of nonlinear systems. IEEE Transactions on Automatic Control, 35(2), 131-140. doi:10.1109/9.45168
Ding, Z. (2003). Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model. Automatica, 39(3), 471-479. doi:10.1016/s0005-1098(02)00251-0
Chen, W.-H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-Observer-Based Control and Related Methods—An Overview. IEEE Transactions on Industrial Electronics, 63(2), 1083-1095. doi:10.1109/tie.2015.2478397
Fridman, E., & Shaked, U. (2002). An improved stabilization method for linear time-delay systems. IEEE Transactions on Automatic Control, 47(11), 1931-1937. doi:10.1109/tac.2002.804462
Fridman, E., & Orlov, Y. (2009). Exponential stability of linear distributed parameter systems with time-varying delays. Automatica, 45(1), 194-201. doi:10.1016/j.automatica.2008.06.006
[-]