Mostrar el registro sencillo del ítem
dc.contributor.author | Mora-Fenoll, María Teresa | es_ES |
dc.contributor.author | Gomez, Juan F. | es_ES |
dc.contributor.author | Morley, Gregory | es_ES |
dc.contributor.author | Ferrero De Loma-Osorio, José María | es_ES |
dc.contributor.author | Trenor Gomis, Beatriz Ana | es_ES |
dc.date.accessioned | 2020-06-16T03:45:30Z | |
dc.date.available | 2020-06-16T03:45:30Z | |
dc.date.issued | 2019-06-18 | es_ES |
dc.identifier.issn | 1932-6203 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/146434 | |
dc.description.abstract | [EN] Heart failure (HF) is characterized, among other factors, by a progressive loss of contractile function and by the formation of an arrhythmogenic substrate, both aspects partially related to intracellular Ca2+ cycling disorders. In failing hearts both electrophysiological and structural remodeling, including fibroblast proliferation, contribute to changes in Ca2+ handling which promote the appearance of Ca2+ alternans (Ca-alt). Ca-alt in turn give rise to repolarization alternans, which promote dispersion of repolarization and contribute to reentrant activity. The computational analysis of the incidence of Ca2+ and/or repolarization alternans under HF conditions in the presence of fibroblasts could provide a better understanding of the mechanisms leading to HF arrhythmias and contractile function disorders. Methods and findings The goal of the present study was to investigate in silico the mechanisms leading to the formation of Ca-alt in failing human ventricular myocytes and tissues with disperse fibroblast distributions. The contribution of ionic currents variability to alternans formation at the cellular level was analyzed and the results show that in normal ventricular tissue, altered Ca2+ dynamics lead to Ca-alt, which precede APD alternans and can be aggravated by the presence of fibroblasts. Electrophysiological remodeling of failing tissue alone is sufficient to develop alternans. The incidence of alternans is reduced when fibroblasts are present in failing tissue due to significantly depressed Ca2+ transients. The analysis of the underlying ionic mechanisms suggests that Ca-alt are driven by Ca2+-handling protein and Ca2+ cycling dysfunctions in the junctional sarcoplasmic reticulum and that their contribution to alternans occurrence depends on the cardiac remodeling conditions and on myocyte-fibroblast interactions. Conclusion It can thus be concluded that fibroblasts modulate the formation of Ca-alt in human ventricular tissue subjected to heart failure-related electrophysiological remodeling. Pharmacological therapies should thus consider the extent of both the electrophysiological and structural remodeling present in the failing heart. | es_ES |
dc.description.sponsorship | This work was partially supported by the Plan Estatal de Investigación Científica y Técnica y de Innovación 2013 2016" from the Ministerio de Economía, Industria y Competitividad of Spain and Fondo Europeo de Desarrollo Regional (FEDER) DPI2016-75799-R (AEI/FEDER, UE), and by the Programa de Ayudas de Investigación y Desarrollo (PAID-01-17) from the Universitat Politècnica de València. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Public Library of Science | es_ES |
dc.relation.ispartof | PLoS ONE | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Sarcoplasmic-Reticulum Ca2+ | es_ES |
dc.subject | Action-Potential dynamics | es_ES |
dc.subject | Electrical alternans | es_ES |
dc.subject | Cardiac alternans | es_ES |
dc.subject | Ventricular myocytes | es_ES |
dc.subject | Cellular alternans | es_ES |
dc.subject | Conduction | es_ES |
dc.subject | Model | es_ES |
dc.subject | Repolarization | es_ES |
dc.subject | Tissue | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1371/journal.pone.0217993 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-01-17/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2016-75799-R/ES/TECNOLOGIAS COMPUTACIONALES PARA LA OPTIMIZACION DE TERAPIAS PERSONALIZADAS DE PATOLOGIAS AURICULARES Y VENTRICULARES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Mora-Fenoll, MT.; Gomez, JF.; Morley, G.; Ferrero De Loma-Osorio, JM.; Trenor Gomis, BA. (2019). Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts. PLoS ONE. 14(6):1-19. https://doi.org/10.1371/journal.pone.0217993 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1371/journal.pone.0217993 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.pmid | 31211790 | es_ES |
dc.identifier.pmcid | PMC6581251 | es_ES |
dc.relation.pasarela | S\392023 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Glukhov, A. V., Fedorov, V. V., Kalish, P. W., Ravikumar, V. K., Lou, Q., Janks, D., … Efimov, I. R. (2012). Conduction Remodeling in Human End-Stage Nonischemic Left Ventricular Cardiomyopathy. Circulation, 125(15), 1835-1847. doi:10.1161/circulationaha.111.047274 | es_ES |
dc.description.references | Lou, Q., Fedorov, V. V., Glukhov, A. V., Moazami, N., Fast, V. G., & Efimov, I. R. (2011). Transmural Heterogeneity and Remodeling of Ventricular Excitation-Contraction Coupling in Human Heart Failure. Circulation, 123(17), 1881-1890. doi:10.1161/circulationaha.110.989707 | es_ES |
dc.description.references | Gomez, J. F., Cardona, K., & Trenor, B. (2015). Lessons learned from multi-scale modeling of the failing heart. Journal of Molecular and Cellular Cardiology, 89, 146-159. doi:10.1016/j.yjmcc.2015.10.016 | es_ES |
dc.description.references | Kohl, P., & Gourdie, R. G. (2014). Fibroblast–myocyte electrotonic coupling: Does it occur in native cardiac tissue? Journal of Molecular and Cellular Cardiology, 70, 37-46. doi:10.1016/j.yjmcc.2013.12.024 | es_ES |
dc.description.references | Gaudesius, G., Miragoli, M., Thomas, S. P., & Rohr, S. (2003). Coupling of Cardiac Electrical Activity Over Extended Distances by Fibroblasts of Cardiac Origin. Circulation Research, 93(5), 421-428. doi:10.1161/01.res.0000089258.40661.0c | es_ES |
dc.description.references | Kohl, P., Camelliti, P., Burton, F. L., & Smith, G. L. (2005). Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. Journal of Electrocardiology, 38(4), 45-50. doi:10.1016/j.jelectrocard.2005.06.096 | es_ES |
dc.description.references | Camelliti, P., Green, C. R., LeGrice, I., & Kohl, P. (2004). Fibroblast Network in Rabbit Sinoatrial Node. Circulation Research, 94(6), 828-835. doi:10.1161/01.res.0000122382.19400.14 | es_ES |
dc.description.references | Rook, M. B., van Ginneken, A. C., de Jonge, B., el Aoumari, A., Gros, D., & Jongsma, H. J. (1992). Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs. American Journal of Physiology-Cell Physiology, 263(5), C959-C977. doi:10.1152/ajpcell.1992.263.5.c959 | es_ES |
dc.description.references | Mahoney, V. M., Mezzano, V., Mirams, G. R., Maass, K., Li, Z., Cerrone, M., … Morley, G. E. (2016). Connexin43 contributes to electrotonic conduction across scar tissue in the intact heart. Scientific Reports, 6(1). doi:10.1038/srep26744 | es_ES |
dc.description.references | Quinn, T. A., Camelliti, P., Rog-Zielinska, E. A., Siedlecka, U., Poggioli, T., O’Toole, E. T., … Kohl, P. (2016). Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proceedings of the National Academy of Sciences, 113(51), 14852-14857. doi:10.1073/pnas.1611184114 | es_ES |
dc.description.references | Rubart, M., Tao, W., Lu, X.-L., Conway, S. J., Reuter, S. P., Lin, S.-F., & Soonpaa, M. H. (2017). Electrical coupling between ventricular myocytes and myofibroblasts in the infarcted mouse heart. Cardiovascular Research, 114(3), 389-400. doi:10.1093/cvr/cvx163 | es_ES |
dc.description.references | Miragoli, M., Gaudesius, G., & Rohr, S. (2006). Electrotonic Modulation of Cardiac Impulse Conduction by Myofibroblasts. Circulation Research, 98(6), 801-810. doi:10.1161/01.res.0000214537.44195.a3 | es_ES |
dc.description.references | Jacquemet, V., & Henriquez, C. S. (2008). Loading effect of fibroblast-myocyte coupling on resting potential, impulse propagation, and repolarization: insights from a microstructure model. American Journal of Physiology-Heart and Circulatory Physiology, 294(5), H2040-H2052. doi:10.1152/ajpheart.01298.2007 | es_ES |
dc.description.references | Li, Y., Asfour, H., & Bursac, N. (2017). Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue. Acta Biomaterialia, 55, 120-130. doi:10.1016/j.actbio.2017.04.027 | es_ES |
dc.description.references | Zlochiver, S., Muñoz, V., Vikstrom, K. L., Taffet, S. M., Berenfeld, O., & Jalife, J. (2008). Electrotonic Myofibroblast-to-Myocyte Coupling Increases Propensity to Reentrant Arrhythmias in Two-Dimensional Cardiac Monolayers. Biophysical Journal, 95(9), 4469-4480. doi:10.1529/biophysj.108.136473 | es_ES |
dc.description.references | Nguyen, T. P., Xie, Y., Garfinkel, A., Qu, Z., & Weiss, J. N. (2011). Arrhythmogenic consequences of myofibroblast–myocyte coupling. Cardiovascular Research, 93(2), 242-251. doi:10.1093/cvr/cvr292 | es_ES |
dc.description.references | Greisas, A., & Zlochiver, S. (2016). The Multi-Domain Fibroblast/Myocyte Coupling in the Cardiac Tissue: A Theoretical Study. Cardiovascular Engineering and Technology, 7(3), 290-304. doi:10.1007/s13239-016-0266-x | es_ES |
dc.description.references | Sridhar, S., Vandersickel, N., & Panfilov, A. V. (2017). Effect of myocyte-fibroblast coupling on the onset of pathological dynamics in a model of ventricular tissue. Scientific Reports, 7(1). doi:10.1038/srep40985 | es_ES |
dc.description.references | Gomez, J. F., Cardona, K., Martinez, L., Saiz, J., & Trenor, B. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 2D Simulation Study. PLoS ONE, 9(7), e103273. doi:10.1371/journal.pone.0103273 | es_ES |
dc.description.references | KODAMA, M., KATO, K., HIRONO, S., OKURA, Y., HANAWA, H., YOSHIDA, T., … AIZAWA, Y. (2004). Linkage Between Mechanical and Electrical Alternans in Patients with Chronic Heart Failure. Journal of Cardiovascular Electrophysiology, 15(3), 295-299. doi:10.1046/j.1540-8167.2004.03016.x | es_ES |
dc.description.references | Rosenbaum, D. S., Jackson, L. E., Smith, J. M., Garan, H., Ruskin, J. N., & Cohen, R. J. (1994). Electrical Alternans and Vulnerability to Ventricular Arrhythmias. New England Journal of Medicine, 330(4), 235-241. doi:10.1056/nejm199401273300402 | es_ES |
dc.description.references | Jordan, P. N., & Christini, D. J. (2006). Action Potential Morphology Influences Intracellular Calcium Handling Stability and the Occurrence of Alternans. Biophysical Journal, 90(2), 672-680. doi:10.1529/biophysj.105.071340 | es_ES |
dc.description.references | Cherry, E. M. (2017). Distinguishing mechanisms for alternans in cardiac cells using constant-diastolic-interval pacing. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(9), 093902. doi:10.1063/1.4999354 | es_ES |
dc.description.references | Groenendaal, W., Ortega, F. A., Krogh-Madsen, T., & Christini, D. J. (2014). Voltage and Calcium Dynamics Both Underlie Cellular Alternans in Cardiac Myocytes. Biophysical Journal, 106(10), 2222-2232. doi:10.1016/j.bpj.2014.03.048 | es_ES |
dc.description.references | Nolasco, J. B., & Dahlen, R. W. (1968). A graphic method for the study of alternation in cardiac action potentials. Journal of Applied Physiology, 25(2), 191-196. doi:10.1152/jappl.1968.25.2.191 | es_ES |
dc.description.references | Picht, E., DeSantiago, J., Blatter, L. A., & Bers, D. M. (2006). Cardiac Alternans Do Not Rely on Diastolic Sarcoplasmic Reticulum Calcium Content Fluctuations. Circulation Research, 99(7), 740-748. doi:10.1161/01.res.0000244002.88813.91 | es_ES |
dc.description.references | Díaz, M. E., O’Neill, S. C., & Eisner, D. A. (2004). Sarcoplasmic Reticulum Calcium Content Fluctuation Is the Key to Cardiac Alternans. Circulation Research, 94(5), 650-656. doi:10.1161/01.res.0000119923.64774.72 | es_ES |
dc.description.references | Zhou, X., Bueno-Orovio, A., Orini, M., Hanson, B., Hayward, M., Taggart, P., … Rodriguez, B. (2016). In Vivo and In Silico Investigation Into Mechanisms of Frequency Dependence of Repolarization Alternans in Human Ventricular Cardiomyocytes. Circulation Research, 118(2), 266-278. doi:10.1161/circresaha.115.307836 | es_ES |
dc.description.references | Xie, L.-H., Sato, D., Garfinkel, A., Qu, Z., & Weiss, J. N. (2008). Intracellular Ca Alternans: Coordinated Regulation by Sarcoplasmic Reticulum Release, Uptake, and Leak. Biophysical Journal, 95(6), 3100-3110. doi:10.1529/biophysj.108.130955 | es_ES |
dc.description.references | Cutler, M. J., Wan, X., Laurita, K. R., Hajjar, R. J., & Rosenbaum, D. S. (2009). Targeted SERCA2a Gene Expression Identifies Molecular Mechanism and Therapeutic Target for Arrhythmogenic Cardiac Alternans. Circulation: Arrhythmia and Electrophysiology, 2(6), 686-694. doi:10.1161/circep.109.863118 | es_ES |
dc.description.references | Kanaporis, G., & Blatter, L. A. (2015). The Mechanisms of Calcium Cycling and Action Potential Dynamics in Cardiac Alternans. Circulation Research, 116(5), 846-856. doi:10.1161/circresaha.116.305404 | es_ES |
dc.description.references | Pastore, J. M., Girouard, S. D., Laurita, K. R., Akar, F. G., & Rosenbaum, D. S. (1999). Mechanism Linking T-Wave Alternans to the Genesis of Cardiac Fibrillation. Circulation, 99(10), 1385-1394. doi:10.1161/01.cir.99.10.1385 | es_ES |
dc.description.references | O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061 | es_ES |
dc.description.references | Mora, M. T., Ferrero, J. M., Romero, L., & Trenor, B. (2017). Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure. PLOS ONE, 12(11), e0187739. doi:10.1371/journal.pone.0187739 | es_ES |
dc.description.references | Andrew MacCannell, K., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R. B., & Giles, W. R. (2007). A Mathematical Model of Electrotonic Interactions between Ventricular Myocytes and Fibroblasts. Biophysical Journal, 92(11), 4121-4132. doi:10.1529/biophysj.106.101410 | es_ES |
dc.description.references | Spach, M. S., Heidlage, J. F., Dolber, P. C., & Barr, R. C. (2000). Electrophysiological Effects of Remodeling Cardiac Gap Junctions and Cell Size. Circulation Research, 86(3), 302-311. doi:10.1161/01.res.86.3.302 | es_ES |
dc.description.references | Kieval, R. S., Spear, J. F., & Moore, E. N. (1992). Gap junctional conductance in ventricular myocyte pairs isolated from postischemic rabbit myocardium. Circulation Research, 71(1), 127-136. doi:10.1161/01.res.71.1.127 | es_ES |
dc.description.references | Gomez, J. F., Cardona, K., Romero, L., Ferrero, J. M., & Trenor, B. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 1D Simulation Study. PLoS ONE, 9(9), e106602. doi:10.1371/journal.pone.0106602 | es_ES |
dc.description.references | Taggart, P., Sutton, P. M., Opthof, T., Coronel, R., Trimlett, R., Pugsley, W., & Kallis, P. (2000). Inhomogeneous Transmural Conduction During Early Ischaemia in Patients with Coronary Artery Disease. Journal of Molecular and Cellular Cardiology, 32(4), 621-630. doi:10.1006/jmcc.2000.1105 | es_ES |
dc.description.references | Heidenreich E. Algoritmos para ecuaciones de reacción difusión aplicados a electrofisiología. Ph.D. Thesis. Universidad de Zaragoza. 2009. https://institutoi4.net/wp-content/uploads/2017/08/TesisEAH.pdf | es_ES |
dc.description.references | Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2 | es_ES |
dc.description.references | Xie, Y., Garfinkel, A., Weiss, J. N., & Qu, Z. (2009). Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models. American Journal of Physiology-Heart and Circulatory Physiology, 297(2), H775-H784. doi:10.1152/ajpheart.00341.2009 | es_ES |
dc.description.references | Luo, C. H., & Rudy, Y. (1991). A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circulation Research, 68(6), 1501-1526. doi:10.1161/01.res.68.6.1501 | es_ES |
dc.description.references | Pruvot, E. J., Katra, R. P., Rosenbaum, D. S., & Laurita, K. R. (2004). Role of Calcium Cycling Versus Restitution in the Mechanism of Repolarization Alternans. Circulation Research, 94(8), 1083-1090. doi:10.1161/01.res.0000125629.72053.95 | es_ES |
dc.description.references | Kanaporis, G., & Blatter, L. A. (2017). Membrane potential determines calcium alternans through modulation of SR Ca 2+ load and L-type Ca 2+ current. Journal of Molecular and Cellular Cardiology, 105, 49-58. doi:10.1016/j.yjmcc.2017.02.004 | es_ES |
dc.description.references | Goldhaber, J. I., Xie, L.-H., Duong, T., Motter, C., Khuu, K., & Weiss, J. N. (2005). Action Potential Duration Restitution and Alternans in Rabbit Ventricular Myocytes. Circulation Research, 96(4), 459-466. doi:10.1161/01.res.0000156891.66893.83 | es_ES |
dc.description.references | Walmsley, J., Rodriguez, J. F., Mirams, G. R., Burrage, K., Efimov, I. R., & Rodriguez, B. (2013). mRNA Expression Levels in Failing Human Hearts Predict Cellular Electrophysiological Remodeling: A Population-Based Simulation Study. PLoS ONE, 8(2), e56359. doi:10.1371/journal.pone.0056359 | es_ES |
dc.description.references | Narayan, S. M., Bayer, J. D., Lalani, G., & Trayanova, N. A. (2008). Action Potential Dynamics Explain Arrhythmic Vulnerability in Human Heart Failure. Journal of the American College of Cardiology, 52(22), 1782-1792. doi:10.1016/j.jacc.2008.08.037 | es_ES |
dc.description.references | Livshitz, L. M., & Rudy, Y. (2007). Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. American Journal of Physiology-Heart and Circulatory Physiology, 292(6), H2854-H2866. doi:10.1152/ajpheart.01347.2006 | es_ES |
dc.description.references | WILSON, L. D., WAN, X., & ROSENBAUM, D. S. (2006). Cellular Alternans: A Mechanism Linking Calcium Cycling Proteins to Cardiac Arrhythmogenesis. Annals of the New York Academy of Sciences, 1080(1), 216-234. doi:10.1196/annals.1380.018 | es_ES |
dc.description.references | Wilson, L. D., Jeyaraj, D., Wan, X., Hoeker, G. S., Said, T. H., Gittinger, M., … Rosenbaum, D. S. (2009). Heart failure enhances susceptibility to arrhythmogenic cardiac alternans. Heart Rhythm, 6(2), 251-259. doi:10.1016/j.hrthm.2008.11.008 | es_ES |
dc.description.references | Cutler, M. J., Wan, X., Plummer, B. N., Liu, H., Deschenes, I., Laurita, K. R., … Rosenbaum, D. S. (2012). Targeted Sarcoplasmic Reticulum Ca 2+ ATPase 2a Gene Delivery to Restore Electrical Stability in the Failing Heart. Circulation, 126(17), 2095-2104. doi:10.1161/circulationaha.111.071480 | es_ES |
dc.description.references | Bayer, J. D., Narayan, S. M., Lalani, G. G., & Trayanova, N. A. (2010). Rate-dependent action potential alternans in human heart failure implicates abnormal intracellular calcium handling. Heart Rhythm, 7(8), 1093-1101. doi:10.1016/j.hrthm.2010.04.008 | es_ES |
dc.description.references | Wang, L., Myles, R. C., De Jesus, N. M., Ohlendorf, A. K. P., Bers, D. M., & Ripplinger, C. M. (2014). Optical Mapping of Sarcoplasmic Reticulum Ca 2+ in the Intact Heart. Circulation Research, 114(9), 1410-1421. doi:10.1161/circresaha.114.302505 | es_ES |
dc.description.references | Rovetti, R., Cui, X., Garfinkel, A., Weiss, J. N., & Qu, Z. (2010). Spark-Induced Sparks As a Mechanism of Intracellular Calcium Alternans in Cardiac Myocytes. Circulation Research, 106(10), 1582-1591. doi:10.1161/circresaha.109.213975 | es_ES |
dc.description.references | Tomek, J., Tomková, M., Zhou, X., Bub, G., & Rodriguez, B. (2018). Modulation of Cardiac Alternans by Altered Sarcoplasmic Reticulum Calcium Release: A Simulation Study. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01306 | es_ES |
dc.description.references | Hammer, K. P., Ljubojevic, S., Ripplinger, C. M., Pieske, B. M., & Bers, D. M. (2015). Cardiac myocyte alternans in intact heart: Influence of cell–cell coupling and β-adrenergic stimulation. Journal of Molecular and Cellular Cardiology, 84, 1-9. doi:10.1016/j.yjmcc.2015.03.012 | es_ES |
dc.description.references | Majumder, R., Engels, M. C., de Vries, A. A. F., Panfilov, A. V., & Pijnappels, D. A. (2016). Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium. Scientific Reports, 6(1). doi:10.1038/srep24334 | es_ES |
dc.description.references | Shiferaw, Y., & Karma, A. (2006). Turing instability mediated by voltage and calcium diffusion in paced cardiac cells. Proceedings of the National Academy of Sciences, 103(15), 5670-5675. doi:10.1073/pnas.0511061103 | es_ES |
dc.description.references | Sato, D., Shiferaw, Y., Garfinkel, A., Weiss, J. N., Qu, Z., & Karma, A. (2006). Spatially Discordant Alternans in Cardiac Tissue. Circulation Research, 99(5), 520-527. doi:10.1161/01.res.0000240542.03986.e7 | es_ES |