- -

Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts

Mostrar el registro completo del ítem

Mora-Fenoll, MT.; Gomez, JF.; Morley, G.; Ferrero De Loma-Osorio, JM.; Trenor Gomis, BA. (2019). Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts. PLoS ONE. 14(6):1-19. https://doi.org/10.1371/journal.pone.0217993

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146434

Ficheros en el ítem

Metadatos del ítem

Título: Mechanistic investigation of Ca2+ alternans in human heart failure and its modulation by fibroblasts
Autor: Mora-Fenoll, María Teresa Gomez, Juan F. Morley, Gregory Ferrero De Loma-Osorio, José María Trenor Gomis, Beatriz Ana
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Heart failure (HF) is characterized, among other factors, by a progressive loss of contractile function and by the formation of an arrhythmogenic substrate, both aspects partially related to intracellular Ca2+ cycling ...[+]
Palabras clave: Sarcoplasmic-Reticulum Ca2+ , Action-Potential dynamics , Electrical alternans , Cardiac alternans , Ventricular myocytes , Cellular alternans , Conduction , Model , Repolarization , Tissue
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS ONE. (issn: 1932-6203 )
DOI: 10.1371/journal.pone.0217993
Editorial:
Public Library of Science
Versión del editor: https://doi.org/10.1371/journal.pone.0217993
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-01-17/
info:eu-repo/grantAgreement/MINECO//DPI2016-75799-R/ES/TECNOLOGIAS COMPUTACIONALES PARA LA OPTIMIZACION DE TERAPIAS PERSONALIZADAS DE PATOLOGIAS AURICULARES Y VENTRICULARES/
Agradecimientos:
This work was partially supported by the Plan Estatal de Investigación Científica y Técnica y de Innovación 2013 2016" from the Ministerio de Economía, Industria y Competitividad of Spain and Fondo Europeo de Desarrollo ...[+]
Tipo: Artículo

References

Glukhov, A. V., Fedorov, V. V., Kalish, P. W., Ravikumar, V. K., Lou, Q., Janks, D., … Efimov, I. R. (2012). Conduction Remodeling in Human End-Stage Nonischemic Left Ventricular Cardiomyopathy. Circulation, 125(15), 1835-1847. doi:10.1161/circulationaha.111.047274

Lou, Q., Fedorov, V. V., Glukhov, A. V., Moazami, N., Fast, V. G., & Efimov, I. R. (2011). Transmural Heterogeneity and Remodeling of Ventricular Excitation-Contraction Coupling in Human Heart Failure. Circulation, 123(17), 1881-1890. doi:10.1161/circulationaha.110.989707

Gomez, J. F., Cardona, K., & Trenor, B. (2015). Lessons learned from multi-scale modeling of the failing heart. Journal of Molecular and Cellular Cardiology, 89, 146-159. doi:10.1016/j.yjmcc.2015.10.016 [+]
Glukhov, A. V., Fedorov, V. V., Kalish, P. W., Ravikumar, V. K., Lou, Q., Janks, D., … Efimov, I. R. (2012). Conduction Remodeling in Human End-Stage Nonischemic Left Ventricular Cardiomyopathy. Circulation, 125(15), 1835-1847. doi:10.1161/circulationaha.111.047274

Lou, Q., Fedorov, V. V., Glukhov, A. V., Moazami, N., Fast, V. G., & Efimov, I. R. (2011). Transmural Heterogeneity and Remodeling of Ventricular Excitation-Contraction Coupling in Human Heart Failure. Circulation, 123(17), 1881-1890. doi:10.1161/circulationaha.110.989707

Gomez, J. F., Cardona, K., & Trenor, B. (2015). Lessons learned from multi-scale modeling of the failing heart. Journal of Molecular and Cellular Cardiology, 89, 146-159. doi:10.1016/j.yjmcc.2015.10.016

Kohl, P., & Gourdie, R. G. (2014). Fibroblast–myocyte electrotonic coupling: Does it occur in native cardiac tissue? Journal of Molecular and Cellular Cardiology, 70, 37-46. doi:10.1016/j.yjmcc.2013.12.024

Gaudesius, G., Miragoli, M., Thomas, S. P., & Rohr, S. (2003). Coupling of Cardiac Electrical Activity Over Extended Distances by Fibroblasts of Cardiac Origin. Circulation Research, 93(5), 421-428. doi:10.1161/01.res.0000089258.40661.0c

Kohl, P., Camelliti, P., Burton, F. L., & Smith, G. L. (2005). Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. Journal of Electrocardiology, 38(4), 45-50. doi:10.1016/j.jelectrocard.2005.06.096

Camelliti, P., Green, C. R., LeGrice, I., & Kohl, P. (2004). Fibroblast Network in Rabbit Sinoatrial Node. Circulation Research, 94(6), 828-835. doi:10.1161/01.res.0000122382.19400.14

Rook, M. B., van Ginneken, A. C., de Jonge, B., el Aoumari, A., Gros, D., & Jongsma, H. J. (1992). Differences in gap junction channels between cardiac myocytes, fibroblasts, and heterologous pairs. American Journal of Physiology-Cell Physiology, 263(5), C959-C977. doi:10.1152/ajpcell.1992.263.5.c959

Mahoney, V. M., Mezzano, V., Mirams, G. R., Maass, K., Li, Z., Cerrone, M., … Morley, G. E. (2016). Connexin43 contributes to electrotonic conduction across scar tissue in the intact heart. Scientific Reports, 6(1). doi:10.1038/srep26744

Quinn, T. A., Camelliti, P., Rog-Zielinska, E. A., Siedlecka, U., Poggioli, T., O’Toole, E. T., … Kohl, P. (2016). Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proceedings of the National Academy of Sciences, 113(51), 14852-14857. doi:10.1073/pnas.1611184114

Rubart, M., Tao, W., Lu, X.-L., Conway, S. J., Reuter, S. P., Lin, S.-F., & Soonpaa, M. H. (2017). Electrical coupling between ventricular myocytes and myofibroblasts in the infarcted mouse heart. Cardiovascular Research, 114(3), 389-400. doi:10.1093/cvr/cvx163

Miragoli, M., Gaudesius, G., & Rohr, S. (2006). Electrotonic Modulation of Cardiac Impulse Conduction by Myofibroblasts. Circulation Research, 98(6), 801-810. doi:10.1161/01.res.0000214537.44195.a3

Jacquemet, V., & Henriquez, C. S. (2008). Loading effect of fibroblast-myocyte coupling on resting potential, impulse propagation, and repolarization: insights from a microstructure model. American Journal of Physiology-Heart and Circulatory Physiology, 294(5), H2040-H2052. doi:10.1152/ajpheart.01298.2007

Li, Y., Asfour, H., & Bursac, N. (2017). Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue. Acta Biomaterialia, 55, 120-130. doi:10.1016/j.actbio.2017.04.027

Zlochiver, S., Muñoz, V., Vikstrom, K. L., Taffet, S. M., Berenfeld, O., & Jalife, J. (2008). Electrotonic Myofibroblast-to-Myocyte Coupling Increases Propensity to Reentrant Arrhythmias in Two-Dimensional Cardiac Monolayers. Biophysical Journal, 95(9), 4469-4480. doi:10.1529/biophysj.108.136473

Nguyen, T. P., Xie, Y., Garfinkel, A., Qu, Z., & Weiss, J. N. (2011). Arrhythmogenic consequences of myofibroblast–myocyte coupling. Cardiovascular Research, 93(2), 242-251. doi:10.1093/cvr/cvr292

Greisas, A., & Zlochiver, S. (2016). The Multi-Domain Fibroblast/Myocyte Coupling in the Cardiac Tissue: A Theoretical Study. Cardiovascular Engineering and Technology, 7(3), 290-304. doi:10.1007/s13239-016-0266-x

Sridhar, S., Vandersickel, N., & Panfilov, A. V. (2017). Effect of myocyte-fibroblast coupling on the onset of pathological dynamics in a model of ventricular tissue. Scientific Reports, 7(1). doi:10.1038/srep40985

Gomez, J. F., Cardona, K., Martinez, L., Saiz, J., & Trenor, B. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 2D Simulation Study. PLoS ONE, 9(7), e103273. doi:10.1371/journal.pone.0103273

KODAMA, M., KATO, K., HIRONO, S., OKURA, Y., HANAWA, H., YOSHIDA, T., … AIZAWA, Y. (2004). Linkage Between Mechanical and Electrical Alternans in Patients with Chronic Heart Failure. Journal of Cardiovascular Electrophysiology, 15(3), 295-299. doi:10.1046/j.1540-8167.2004.03016.x

Rosenbaum, D. S., Jackson, L. E., Smith, J. M., Garan, H., Ruskin, J. N., & Cohen, R. J. (1994). Electrical Alternans and Vulnerability to Ventricular Arrhythmias. New England Journal of Medicine, 330(4), 235-241. doi:10.1056/nejm199401273300402

Jordan, P. N., & Christini, D. J. (2006). Action Potential Morphology Influences Intracellular Calcium Handling Stability and the Occurrence of Alternans. Biophysical Journal, 90(2), 672-680. doi:10.1529/biophysj.105.071340

Cherry, E. M. (2017). Distinguishing mechanisms for alternans in cardiac cells using constant-diastolic-interval pacing. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(9), 093902. doi:10.1063/1.4999354

Groenendaal, W., Ortega, F. A., Krogh-Madsen, T., & Christini, D. J. (2014). Voltage and Calcium Dynamics Both Underlie Cellular Alternans in Cardiac Myocytes. Biophysical Journal, 106(10), 2222-2232. doi:10.1016/j.bpj.2014.03.048

Nolasco, J. B., & Dahlen, R. W. (1968). A graphic method for the study of alternation in cardiac action potentials. Journal of Applied Physiology, 25(2), 191-196. doi:10.1152/jappl.1968.25.2.191

Picht, E., DeSantiago, J., Blatter, L. A., & Bers, D. M. (2006). Cardiac Alternans Do Not Rely on Diastolic Sarcoplasmic Reticulum Calcium Content Fluctuations. Circulation Research, 99(7), 740-748. doi:10.1161/01.res.0000244002.88813.91

Díaz, M. E., O’Neill, S. C., & Eisner, D. A. (2004). Sarcoplasmic Reticulum Calcium Content Fluctuation Is the Key to Cardiac Alternans. Circulation Research, 94(5), 650-656. doi:10.1161/01.res.0000119923.64774.72

Zhou, X., Bueno-Orovio, A., Orini, M., Hanson, B., Hayward, M., Taggart, P., … Rodriguez, B. (2016). In Vivo and In Silico Investigation Into Mechanisms of Frequency Dependence of Repolarization Alternans in Human Ventricular Cardiomyocytes. Circulation Research, 118(2), 266-278. doi:10.1161/circresaha.115.307836

Xie, L.-H., Sato, D., Garfinkel, A., Qu, Z., & Weiss, J. N. (2008). Intracellular Ca Alternans: Coordinated Regulation by Sarcoplasmic Reticulum Release, Uptake, and Leak. Biophysical Journal, 95(6), 3100-3110. doi:10.1529/biophysj.108.130955

Cutler, M. J., Wan, X., Laurita, K. R., Hajjar, R. J., & Rosenbaum, D. S. (2009). Targeted SERCA2a Gene Expression Identifies Molecular Mechanism and Therapeutic Target for Arrhythmogenic Cardiac Alternans. Circulation: Arrhythmia and Electrophysiology, 2(6), 686-694. doi:10.1161/circep.109.863118

Kanaporis, G., & Blatter, L. A. (2015). The Mechanisms of Calcium Cycling and Action Potential Dynamics in Cardiac Alternans. Circulation Research, 116(5), 846-856. doi:10.1161/circresaha.116.305404

Pastore, J. M., Girouard, S. D., Laurita, K. R., Akar, F. G., & Rosenbaum, D. S. (1999). Mechanism Linking T-Wave Alternans to the Genesis of Cardiac Fibrillation. Circulation, 99(10), 1385-1394. doi:10.1161/01.cir.99.10.1385

O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061

Mora, M. T., Ferrero, J. M., Romero, L., & Trenor, B. (2017). Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure. PLOS ONE, 12(11), e0187739. doi:10.1371/journal.pone.0187739

Andrew MacCannell, K., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R. B., & Giles, W. R. (2007). A Mathematical Model of Electrotonic Interactions between Ventricular Myocytes and Fibroblasts. Biophysical Journal, 92(11), 4121-4132. doi:10.1529/biophysj.106.101410

Spach, M. S., Heidlage, J. F., Dolber, P. C., & Barr, R. C. (2000). Electrophysiological Effects of Remodeling Cardiac Gap Junctions and Cell Size. Circulation Research, 86(3), 302-311. doi:10.1161/01.res.86.3.302

Kieval, R. S., Spear, J. F., & Moore, E. N. (1992). Gap junctional conductance in ventricular myocyte pairs isolated from postischemic rabbit myocardium. Circulation Research, 71(1), 127-136. doi:10.1161/01.res.71.1.127

Gomez, J. F., Cardona, K., Romero, L., Ferrero, J. M., & Trenor, B. (2014). Electrophysiological and Structural Remodeling in Heart Failure Modulate Arrhythmogenesis. 1D Simulation Study. PLoS ONE, 9(9), e106602. doi:10.1371/journal.pone.0106602

Taggart, P., Sutton, P. M., Opthof, T., Coronel, R., Trimlett, R., Pugsley, W., & Kallis, P. (2000). Inhomogeneous Transmural Conduction During Early Ischaemia in Patients with Coronary Artery Disease. Journal of Molecular and Cellular Cardiology, 32(4), 621-630. doi:10.1006/jmcc.2000.1105

Heidenreich E. Algoritmos para ecuaciones de reacción difusión aplicados a electrofisiología. Ph.D. Thesis. Universidad de Zaragoza. 2009. https://institutoi4.net/wp-content/uploads/2017/08/TesisEAH.pdf

Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2

Xie, Y., Garfinkel, A., Weiss, J. N., & Qu, Z. (2009). Cardiac alternans induced by fibroblast-myocyte coupling: mechanistic insights from computational models. American Journal of Physiology-Heart and Circulatory Physiology, 297(2), H775-H784. doi:10.1152/ajpheart.00341.2009

Luo, C. H., & Rudy, Y. (1991). A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circulation Research, 68(6), 1501-1526. doi:10.1161/01.res.68.6.1501

Pruvot, E. J., Katra, R. P., Rosenbaum, D. S., & Laurita, K. R. (2004). Role of Calcium Cycling Versus Restitution in the Mechanism of Repolarization Alternans. Circulation Research, 94(8), 1083-1090. doi:10.1161/01.res.0000125629.72053.95

Kanaporis, G., & Blatter, L. A. (2017). Membrane potential determines calcium alternans through modulation of SR Ca 2+ load and L-type Ca 2+ current. Journal of Molecular and Cellular Cardiology, 105, 49-58. doi:10.1016/j.yjmcc.2017.02.004

Goldhaber, J. I., Xie, L.-H., Duong, T., Motter, C., Khuu, K., & Weiss, J. N. (2005). Action Potential Duration Restitution and Alternans in Rabbit Ventricular Myocytes. Circulation Research, 96(4), 459-466. doi:10.1161/01.res.0000156891.66893.83

Walmsley, J., Rodriguez, J. F., Mirams, G. R., Burrage, K., Efimov, I. R., & Rodriguez, B. (2013). mRNA Expression Levels in Failing Human Hearts Predict Cellular Electrophysiological Remodeling: A Population-Based Simulation Study. PLoS ONE, 8(2), e56359. doi:10.1371/journal.pone.0056359

Narayan, S. M., Bayer, J. D., Lalani, G., & Trayanova, N. A. (2008). Action Potential Dynamics Explain Arrhythmic Vulnerability in Human Heart Failure. Journal of the American College of Cardiology, 52(22), 1782-1792. doi:10.1016/j.jacc.2008.08.037

Livshitz, L. M., & Rudy, Y. (2007). Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. American Journal of Physiology-Heart and Circulatory Physiology, 292(6), H2854-H2866. doi:10.1152/ajpheart.01347.2006

WILSON, L. D., WAN, X., & ROSENBAUM, D. S. (2006). Cellular Alternans: A Mechanism Linking Calcium Cycling Proteins to Cardiac Arrhythmogenesis. Annals of the New York Academy of Sciences, 1080(1), 216-234. doi:10.1196/annals.1380.018

Wilson, L. D., Jeyaraj, D., Wan, X., Hoeker, G. S., Said, T. H., Gittinger, M., … Rosenbaum, D. S. (2009). Heart failure enhances susceptibility to arrhythmogenic cardiac alternans. Heart Rhythm, 6(2), 251-259. doi:10.1016/j.hrthm.2008.11.008

Cutler, M. J., Wan, X., Plummer, B. N., Liu, H., Deschenes, I., Laurita, K. R., … Rosenbaum, D. S. (2012). Targeted Sarcoplasmic Reticulum Ca 2+ ATPase 2a Gene Delivery to Restore Electrical Stability in the Failing Heart. Circulation, 126(17), 2095-2104. doi:10.1161/circulationaha.111.071480

Bayer, J. D., Narayan, S. M., Lalani, G. G., & Trayanova, N. A. (2010). Rate-dependent action potential alternans in human heart failure implicates abnormal intracellular calcium handling. Heart Rhythm, 7(8), 1093-1101. doi:10.1016/j.hrthm.2010.04.008

Wang, L., Myles, R. C., De Jesus, N. M., Ohlendorf, A. K. P., Bers, D. M., & Ripplinger, C. M. (2014). Optical Mapping of Sarcoplasmic Reticulum Ca 2+ in the Intact Heart. Circulation Research, 114(9), 1410-1421. doi:10.1161/circresaha.114.302505

Rovetti, R., Cui, X., Garfinkel, A., Weiss, J. N., & Qu, Z. (2010). Spark-Induced Sparks As a Mechanism of Intracellular Calcium Alternans in Cardiac Myocytes. Circulation Research, 106(10), 1582-1591. doi:10.1161/circresaha.109.213975

Tomek, J., Tomková, M., Zhou, X., Bub, G., & Rodriguez, B. (2018). Modulation of Cardiac Alternans by Altered Sarcoplasmic Reticulum Calcium Release: A Simulation Study. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01306

Hammer, K. P., Ljubojevic, S., Ripplinger, C. M., Pieske, B. M., & Bers, D. M. (2015). Cardiac myocyte alternans in intact heart: Influence of cell–cell coupling and β-adrenergic stimulation. Journal of Molecular and Cellular Cardiology, 84, 1-9. doi:10.1016/j.yjmcc.2015.03.012

Majumder, R., Engels, M. C., de Vries, A. A. F., Panfilov, A. V., & Pijnappels, D. A. (2016). Islands of spatially discordant APD alternans underlie arrhythmogenesis by promoting electrotonic dyssynchrony in models of fibrotic rat ventricular myocardium. Scientific Reports, 6(1). doi:10.1038/srep24334

Shiferaw, Y., & Karma, A. (2006). Turing instability mediated by voltage and calcium diffusion in paced cardiac cells. Proceedings of the National Academy of Sciences, 103(15), 5670-5675. doi:10.1073/pnas.0511061103

Sato, D., Shiferaw, Y., Garfinkel, A., Weiss, J. N., Qu, Z., & Karma, A. (2006). Spatially Discordant Alternans in Cardiac Tissue. Circulation Research, 99(5), 520-527. doi:10.1161/01.res.0000240542.03986.e7

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem