- -

Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions

Show full item record

Alvarez-Ponce, D.; Ruiz-González, M.; Vera Sirera, FJ.; Feyertag, F.; Perez Amador, MA.; Fares Riaño, MA. (2018). Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions. International Journal of Molecular Sciences. 19(8). https://doi.org/10.3390/ijms19082276

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146636

Files in this item

Item Metadata

Title: Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions
Author: Alvarez-Ponce, D. Ruiz-González, M. Vera Sirera, Francisco José Feyertag, F. Perez Amador, Miguel Angel Fares Riaño, Mario Ali
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
Abstract:
[EN] Comparison of the proteins of thermophilic, mesophilic, and psychrophilic prokaryotes has revealed several features characteristic to proteins adapted to high temperatures, which increase their thermostability. These ...[+]
Subjects: Temperature response , Protein thermostability , Salt bridges , Intrinsically disordered proteins
Copyrigths: Reconocimiento (by)
Source:
International Journal of Molecular Sciences. (eissn: 1422-0067 )
DOI: 10.3390/ijms19082276
Publisher:
MDPI AG
Publisher version: https://doi.org/ 10.3390/ijms19082276
Project ID:
info:eu-repo/grantAgreement/MINECO//BFU2015-66073-P/ES/CARACTERIZANDO LOS MECANISMOS DE INNOVACION POR DUPLICACION GENICA/
info:eu-repo/grantAgreement/MINECO//BIO2014-55946-P/ES/LAS GIBERELINAS EN EL CONTROL DE LA MORFOGENESIS DE LOS OVULOS/
info:eu-repo/grantAgreement/MINECO//BFU2012-36346/ES/EL PAPEL DE LA DUPLICACION GENICA EN LA COMPLEJIDAD DE SISTEMAS BIOLOGICOS: RE-DIRECCION DE DINAMICAS MUTACIONALES Y ORIGEN DE INNOVACIONES BIOLOGICAS/
info:eu-repo/grantAgreement/University of Nevada, Reno//P20GM103440/
info:eu-repo/grantAgreement/University of Nevada, Reno//5P30GM110767-04/
Thanks:
D.A.-P. and F.F. were supported by funds from the University of Nevada, Reno, and by pilot grants from Nevada INBRE (P20GM103440) and the Smooth Muscle Plasticity COBRE from the University of Nevada, Reno (5P30GM110767-04), ...[+]
Type: Artículo

References

Karshikoff, A., & Ladenstein, R. (2001). Ion pairs and the thermotolerance of proteins from hyperthermophiles: a ‘traffic rule’ for hot roads. Trends in Biochemical Sciences, 26(9), 550-557. doi:10.1016/s0968-0004(01)01918-1

Strop, P., & Mayo, S. L. (2000). Contribution of Surface Salt Bridges to Protein Stability†,‡. Biochemistry, 39(6), 1251-1255. doi:10.1021/bi992257j

PERUTZ, M. F., & RAIDT, H. (1975). Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature, 255(5505), 256-259. doi:10.1038/255256a0 [+]
Karshikoff, A., & Ladenstein, R. (2001). Ion pairs and the thermotolerance of proteins from hyperthermophiles: a ‘traffic rule’ for hot roads. Trends in Biochemical Sciences, 26(9), 550-557. doi:10.1016/s0968-0004(01)01918-1

Strop, P., & Mayo, S. L. (2000). Contribution of Surface Salt Bridges to Protein Stability†,‡. Biochemistry, 39(6), 1251-1255. doi:10.1021/bi992257j

PERUTZ, M. F., & RAIDT, H. (1975). Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature, 255(5505), 256-259. doi:10.1038/255256a0

Argos, P., Rossmann, M. G., Grau, U. M., Zuber, H., Frank, G., & Tratschin, J. D. (1979). Thermal stability and protein structure. Biochemistry, 18(25), 5698-5703. doi:10.1021/bi00592a028

Beeby, M., O’Connor, B. D., Ryttersgaard, C., Boutz, D. R., Perry, L. J., & Yeates, T. O. (2005). The Genomics of Disulfide Bonding and Protein Stabilization in Thermophiles. PLoS Biology, 3(9), e309. doi:10.1371/journal.pbio.0030309

Haney, P. J., Badger, J. H., Buldak, G. L., Reich, C. I., Woese, C. R., & Olsen, G. J. (1999). Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proceedings of the National Academy of Sciences, 96(7), 3578-3583. doi:10.1073/pnas.96.7.3578

Kreil, D. P. (2001). Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Research, 29(7), 1608-1615. doi:10.1093/nar/29.7.1608

Tekaia, F., Yeramian, E., & Dujon, B. (2002). Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene, 297(1-2), 51-60. doi:10.1016/s0378-1119(02)00871-5

Zeldovich, K. B., Berezovsky, I. N., & Shakhnovich, E. I. (2007). Protein and DNA Sequence Determinants of Thermophilic Adaptation. PLoS Computational Biology, 3(1), e5. doi:10.1371/journal.pcbi.0030005

Chakravarty, S., & Varadarajan, R. (2000). Elucidation of determinants of protein stability through genome sequence analysis. FEBS Letters, 470(1), 65-69. doi:10.1016/s0014-5793(00)01267-9

Cambillau, C., & Claverie, J.-M. (2000). Structural and Genomic Correlates of Hyperthermostability. Journal of Biological Chemistry, 275(42), 32383-32386. doi:10.1074/jbc.c000497200

Burra, P. V., Kalmar, L., & Tompa, P. (2010). Reduction in Structural Disorder and Functional Complexity in the Thermal Adaptation of Prokaryotes. PLoS ONE, 5(8), e12069. doi:10.1371/journal.pone.0012069

Wang, J., Yang, Y., Cao, Z., Li, Z., Zhao, H., & Zhou, Y. (2013). The Role of Semidisorder in Temperature Adaptation of Bacterial FlgM Proteins. Biophysical Journal, 105(11), 2598-2605. doi:10.1016/j.bpj.2013.10.026

Vicedo, E., Schlessinger, A., & Rost, B. (2015). Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes. PLOS ONE, 10(8), e0133990. doi:10.1371/journal.pone.0133990

Galea, C. A., High, A. A., Obenauer, J. C., Mishra, A., Park, C.-G., Punta, M., … Kriwacki, R. W. (2009). Large-Scale Analysis of Thermostable, Mammalian Proteins Provides Insights into the Intrinsically Disordered Proteome. Journal of Proteome Research, 8(1), 211-226. doi:10.1021/pr800308v

Tsvetkov, P., Myers, N., Moscovitz, O., Sharon, M., Prilusky, J., & Shaul, Y. (2012). Thermo-resistant intrinsically disordered proteins are efficient 20S proteasome substrates. Mol. BioSyst., 8(1), 368-373. doi:10.1039/c1mb05283g

Galea, C. A., Nourse, A., Wang, Y., Sivakolundu, S. G., Heller, W. T., & Kriwacki, R. W. (2008). Role of Intrinsic Flexibility in Signal Transduction Mediated by the Cell Cycle Regulator, p27Kip1. Journal of Molecular Biology, 376(3), 827-838. doi:10.1016/j.jmb.2007.12.016

Van Noort, V., Bradatsch, B., Arumugam, M., Amlacher, S., Bange, G., Creevey, C., … Bork, P. (2013). Consistent mutational paths predict eukaryotic thermostability. BMC Evolutionary Biology, 13(1), 7. doi:10.1186/1471-2148-13-7

Wang, G.-Z., & Lercher, M. J. (2010). Amino acid composition in endothermic vertebrates is biased in the same direction as in thermophilic prokaryotes. BMC Evolutionary Biology, 10(1), 263. doi:10.1186/1471-2148-10-263

Windisch, H. S., Lucassen, M., & Frickenhaus, S. (2012). Evolutionary force in confamiliar marine vertebrates of different temperature realms: adaptive trends in zoarcid fish transcriptomes. BMC Genomics, 13(1), 549. doi:10.1186/1471-2164-13-549

Albanèse, V., Yam, A. Y.-W., Baughman, J., Parnot, C., & Frydman, J. (2006). Systems Analyses Reveal Two Chaperone Networks with Distinct Functions in Eukaryotic Cells. Cell, 124(1), 75-88. doi:10.1016/j.cell.2005.11.039

Berry, J., & Bjorkman, O. (1980). Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annual Review of Plant Physiology, 31(1), 491-543. doi:10.1146/annurev.pp.31.060180.002423

Sueoka, N. (1961). CORRELATION BETWEEN BASE COMPOSITION OF DEOXYRIBONUCLEIC ACID AND AMINO ACID COMPOSITION OF PROTEIN. Proceedings of the National Academy of Sciences, 47(8), 1141-1149. doi:10.1073/pnas.47.8.1141

Cherry, J. L. (2009). Highly Expressed and Slowly Evolving Proteins Share Compositional Properties with Thermophilic Proteins. Molecular Biology and Evolution, 27(3), 735-741. doi:10.1093/molbev/msp270

The amino acid composition is different between the cytoplasmic and extracellular sides in membrane proteins. (1992). FEBS Letters, 303(2-3), 141-146. doi:10.1016/0014-5793(92)80506-c

Nakashima, H., & Nishikawa, K. (1994). Discrimination of Intracellular and Extracellular Proteins Using Amino Acid Composition and Residue-pair Frequencies. Journal of Molecular Biology, 238(1), 54-61. doi:10.1006/jmbi.1994.1267

Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21(16), 3433-3434. doi:10.1093/bioinformatics/bti541

Peng, Z., Uversky, V. N., & Kurgan, L. (2016). Genes encoding intrinsic disorder in Eukaryota have high GC content. Intrinsically Disordered Proteins, 4(1), e1262225. doi:10.1080/21690707.2016.1262225

Yruela, I., & Contreras-Moreira, B. (2013). Genetic recombination is associated with intrinsic disorder in plant proteomes. BMC Genomics, 14(1), 772. doi:10.1186/1471-2164-14-772

Paliy, O., Gargac, S. M., Cheng, Y., Uversky, V. N., & Dunker, A. K. (2008). Protein Disorder Is Positively Correlated with Gene Expression inEscherichia coli. Journal of Proteome Research, 7(6), 2234-2245. doi:10.1021/pr800055r

Singh, G. P., & Dash, D. (2008). How expression level influences the disorderness of proteins. Biochemical and Biophysical Research Communications, 371(3), 401-404. doi:10.1016/j.bbrc.2008.04.072

Yang, J.-R., Liao, B.-Y., Zhuang, S.-M., & Zhang, J. (2012). Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. Proceedings of the National Academy of Sciences, 109(14), E831-E840. doi:10.1073/pnas.1117408109

Hendsch, Z. S., & Tidor, B. (1994). Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Science, 3(2), 211-226. doi:10.1002/pro.5560030206

Zhou, X.-X., Wang, Y.-B., Pan, Y.-J., & Li, W.-F. (2007). Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids, 34(1), 25-33. doi:10.1007/s00726-007-0589-x

Catanzano, F., Barone, G., Graziano, G., & Capasso, S. (1997). Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease A. Protein Science, 6(8), 1682-1693. doi:10.1002/pro.5560060808

Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10(3), 195-205. doi:10.1038/nrg2526

Bolser, D., Staines, D. M., Pritchard, E., & Kersey, P. (2016). Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data. Methods in Molecular Biology, 115-140. doi:10.1007/978-1-4939-3167-5_6

Kasprzyk, A. (2003). EnsMart: A Generic System for Fast and Flexible Access to Biological Data. Genome Research, 14(1), 160-169. doi:10.1101/gr.1645104

Hooper, C. M., Castleden, I. R., Tanz, S. K., Aryamanesh, N., & Millar, A. H. (2016). SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Research, 45(D1), D1064-D1074. doi:10.1093/nar/gkw1041

R: A language and environment for statistical computing. R Foundation for Statistical Computinghttp://www.R-project.org/

Kim, S. (2015). ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients. Communications for Statistical Applications and Methods, 22(6), 665-674. doi:10.5351/csam.2015.22.6.665

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record