Karshikoff, A., & Ladenstein, R. (2001). Ion pairs and the thermotolerance of proteins from hyperthermophiles: a ‘traffic rule’ for hot roads. Trends in Biochemical Sciences, 26(9), 550-557. doi:10.1016/s0968-0004(01)01918-1
Strop, P., & Mayo, S. L. (2000). Contribution of Surface Salt Bridges to Protein Stability†,‡. Biochemistry, 39(6), 1251-1255. doi:10.1021/bi992257j
PERUTZ, M. F., & RAIDT, H. (1975). Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature, 255(5505), 256-259. doi:10.1038/255256a0
[+]
Karshikoff, A., & Ladenstein, R. (2001). Ion pairs and the thermotolerance of proteins from hyperthermophiles: a ‘traffic rule’ for hot roads. Trends in Biochemical Sciences, 26(9), 550-557. doi:10.1016/s0968-0004(01)01918-1
Strop, P., & Mayo, S. L. (2000). Contribution of Surface Salt Bridges to Protein Stability†,‡. Biochemistry, 39(6), 1251-1255. doi:10.1021/bi992257j
PERUTZ, M. F., & RAIDT, H. (1975). Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature, 255(5505), 256-259. doi:10.1038/255256a0
Argos, P., Rossmann, M. G., Grau, U. M., Zuber, H., Frank, G., & Tratschin, J. D. (1979). Thermal stability and protein structure. Biochemistry, 18(25), 5698-5703. doi:10.1021/bi00592a028
Beeby, M., O’Connor, B. D., Ryttersgaard, C., Boutz, D. R., Perry, L. J., & Yeates, T. O. (2005). The Genomics of Disulfide Bonding and Protein Stabilization in Thermophiles. PLoS Biology, 3(9), e309. doi:10.1371/journal.pbio.0030309
Haney, P. J., Badger, J. H., Buldak, G. L., Reich, C. I., Woese, C. R., & Olsen, G. J. (1999). Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proceedings of the National Academy of Sciences, 96(7), 3578-3583. doi:10.1073/pnas.96.7.3578
Kreil, D. P. (2001). Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Research, 29(7), 1608-1615. doi:10.1093/nar/29.7.1608
Tekaia, F., Yeramian, E., & Dujon, B. (2002). Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene, 297(1-2), 51-60. doi:10.1016/s0378-1119(02)00871-5
Zeldovich, K. B., Berezovsky, I. N., & Shakhnovich, E. I. (2007). Protein and DNA Sequence Determinants of Thermophilic Adaptation. PLoS Computational Biology, 3(1), e5. doi:10.1371/journal.pcbi.0030005
Chakravarty, S., & Varadarajan, R. (2000). Elucidation of determinants of protein stability through genome sequence analysis. FEBS Letters, 470(1), 65-69. doi:10.1016/s0014-5793(00)01267-9
Cambillau, C., & Claverie, J.-M. (2000). Structural and Genomic Correlates of Hyperthermostability. Journal of Biological Chemistry, 275(42), 32383-32386. doi:10.1074/jbc.c000497200
Burra, P. V., Kalmar, L., & Tompa, P. (2010). Reduction in Structural Disorder and Functional Complexity in the Thermal Adaptation of Prokaryotes. PLoS ONE, 5(8), e12069. doi:10.1371/journal.pone.0012069
Wang, J., Yang, Y., Cao, Z., Li, Z., Zhao, H., & Zhou, Y. (2013). The Role of Semidisorder in Temperature Adaptation of Bacterial FlgM Proteins. Biophysical Journal, 105(11), 2598-2605. doi:10.1016/j.bpj.2013.10.026
Vicedo, E., Schlessinger, A., & Rost, B. (2015). Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes. PLOS ONE, 10(8), e0133990. doi:10.1371/journal.pone.0133990
Galea, C. A., High, A. A., Obenauer, J. C., Mishra, A., Park, C.-G., Punta, M., … Kriwacki, R. W. (2009). Large-Scale Analysis of Thermostable, Mammalian Proteins Provides Insights into the Intrinsically Disordered Proteome. Journal of Proteome Research, 8(1), 211-226. doi:10.1021/pr800308v
Tsvetkov, P., Myers, N., Moscovitz, O., Sharon, M., Prilusky, J., & Shaul, Y. (2012). Thermo-resistant intrinsically disordered proteins are efficient 20S proteasome substrates. Mol. BioSyst., 8(1), 368-373. doi:10.1039/c1mb05283g
Galea, C. A., Nourse, A., Wang, Y., Sivakolundu, S. G., Heller, W. T., & Kriwacki, R. W. (2008). Role of Intrinsic Flexibility in Signal Transduction Mediated by the Cell Cycle Regulator, p27Kip1. Journal of Molecular Biology, 376(3), 827-838. doi:10.1016/j.jmb.2007.12.016
Van Noort, V., Bradatsch, B., Arumugam, M., Amlacher, S., Bange, G., Creevey, C., … Bork, P. (2013). Consistent mutational paths predict eukaryotic thermostability. BMC Evolutionary Biology, 13(1), 7. doi:10.1186/1471-2148-13-7
Wang, G.-Z., & Lercher, M. J. (2010). Amino acid composition in endothermic vertebrates is biased in the same direction as in thermophilic prokaryotes. BMC Evolutionary Biology, 10(1), 263. doi:10.1186/1471-2148-10-263
Windisch, H. S., Lucassen, M., & Frickenhaus, S. (2012). Evolutionary force in confamiliar marine vertebrates of different temperature realms: adaptive trends in zoarcid fish transcriptomes. BMC Genomics, 13(1), 549. doi:10.1186/1471-2164-13-549
Albanèse, V., Yam, A. Y.-W., Baughman, J., Parnot, C., & Frydman, J. (2006). Systems Analyses Reveal Two Chaperone Networks with Distinct Functions in Eukaryotic Cells. Cell, 124(1), 75-88. doi:10.1016/j.cell.2005.11.039
Berry, J., & Bjorkman, O. (1980). Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annual Review of Plant Physiology, 31(1), 491-543. doi:10.1146/annurev.pp.31.060180.002423
Sueoka, N. (1961). CORRELATION BETWEEN BASE COMPOSITION OF DEOXYRIBONUCLEIC ACID AND AMINO ACID COMPOSITION OF PROTEIN. Proceedings of the National Academy of Sciences, 47(8), 1141-1149. doi:10.1073/pnas.47.8.1141
Cherry, J. L. (2009). Highly Expressed and Slowly Evolving Proteins Share Compositional Properties with Thermophilic Proteins. Molecular Biology and Evolution, 27(3), 735-741. doi:10.1093/molbev/msp270
The amino acid composition is different between the cytoplasmic and extracellular sides in membrane proteins. (1992). FEBS Letters, 303(2-3), 141-146. doi:10.1016/0014-5793(92)80506-c
Nakashima, H., & Nishikawa, K. (1994). Discrimination of Intracellular and Extracellular Proteins Using Amino Acid Composition and Residue-pair Frequencies. Journal of Molecular Biology, 238(1), 54-61. doi:10.1006/jmbi.1994.1267
Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21(16), 3433-3434. doi:10.1093/bioinformatics/bti541
Peng, Z., Uversky, V. N., & Kurgan, L. (2016). Genes encoding intrinsic disorder in Eukaryota have high GC content. Intrinsically Disordered Proteins, 4(1), e1262225. doi:10.1080/21690707.2016.1262225
Yruela, I., & Contreras-Moreira, B. (2013). Genetic recombination is associated with intrinsic disorder in plant proteomes. BMC Genomics, 14(1), 772. doi:10.1186/1471-2164-14-772
Paliy, O., Gargac, S. M., Cheng, Y., Uversky, V. N., & Dunker, A. K. (2008). Protein Disorder Is Positively Correlated with Gene Expression inEscherichia coli. Journal of Proteome Research, 7(6), 2234-2245. doi:10.1021/pr800055r
Singh, G. P., & Dash, D. (2008). How expression level influences the disorderness of proteins. Biochemical and Biophysical Research Communications, 371(3), 401-404. doi:10.1016/j.bbrc.2008.04.072
Yang, J.-R., Liao, B.-Y., Zhuang, S.-M., & Zhang, J. (2012). Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. Proceedings of the National Academy of Sciences, 109(14), E831-E840. doi:10.1073/pnas.1117408109
Hendsch, Z. S., & Tidor, B. (1994). Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Science, 3(2), 211-226. doi:10.1002/pro.5560030206
Zhou, X.-X., Wang, Y.-B., Pan, Y.-J., & Li, W.-F. (2007). Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids, 34(1), 25-33. doi:10.1007/s00726-007-0589-x
Catanzano, F., Barone, G., Graziano, G., & Capasso, S. (1997). Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease A. Protein Science, 6(8), 1682-1693. doi:10.1002/pro.5560060808
Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10(3), 195-205. doi:10.1038/nrg2526
Bolser, D., Staines, D. M., Pritchard, E., & Kersey, P. (2016). Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data. Methods in Molecular Biology, 115-140. doi:10.1007/978-1-4939-3167-5_6
Kasprzyk, A. (2003). EnsMart: A Generic System for Fast and Flexible Access to Biological Data. Genome Research, 14(1), 160-169. doi:10.1101/gr.1645104
Hooper, C. M., Castleden, I. R., Tanz, S. K., Aryamanesh, N., & Millar, A. H. (2016). SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Research, 45(D1), D1064-D1074. doi:10.1093/nar/gkw1041
R: A language and environment for statistical computing. R Foundation for Statistical Computinghttp://www.R-project.org/
Kim, S. (2015). ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients. Communications for Statistical Applications and Methods, 22(6), 665-674. doi:10.5351/csam.2015.22.6.665
[-]