- -

Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Alvarez-Ponce, D. es_ES
dc.contributor.author Ruiz-González, M. es_ES
dc.contributor.author Vera Sirera, Francisco José es_ES
dc.contributor.author Feyertag, F. es_ES
dc.contributor.author Perez Amador, Miguel Angel es_ES
dc.contributor.author Fares Riaño, Mario Ali es_ES
dc.date.accessioned 2020-06-19T03:30:32Z
dc.date.available 2020-06-19T03:30:32Z
dc.date.issued 2018-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/146636
dc.description.abstract [EN] Comparison of the proteins of thermophilic, mesophilic, and psychrophilic prokaryotes has revealed several features characteristic to proteins adapted to high temperatures, which increase their thermostability. These characteristics include a profusion of disulfide bonds, salt bridges, hydrogen bonds, and hydrophobic interactions, and a depletion in intrinsically disordered regions. It is unclear, however, whether such differences can also be observed in eukaryotic proteins or when comparing proteins that are adapted to temperatures that are more subtly different. When an organism is exposed to high temperatures, a subset of its proteins is overexpressed (heat-induced proteins), whereas others are either repressed (heat-repressed proteins) or remain unaffected. Here, we determine the expression levels of all genes in the eukaryotic model system Arabidopsis thaliana at 22 and 37 degrees C, and compare both the amino acid compositions and levels of intrinsic disorder of heat-induced and heat-repressed proteins. We show that, compared to heat-repressed proteins, heat-induced proteins are enriched in electrostatically charged amino acids and depleted in polar amino acids, mirroring thermophile proteins. However, in contrast with thermophile proteins, heat-induced proteins are enriched in intrinsically disordered regions, and depleted in hydrophobic amino acids. Our results indicate that temperature adaptation at the level of amino acid composition and intrinsic disorder can be observed not only in proteins of thermophilic organisms, but also in eukaryotic heat-induced proteins; the underlying adaptation pathways, however, are similar but not the same. es_ES
dc.description.sponsorship D.A.-P. and F.F. were supported by funds from the University of Nevada, Reno, and by pilot grants from Nevada INBRE (P20GM103440) and the Smooth Muscle Plasticity COBRE from the University of Nevada, Reno (5P30GM110767-04), both funded by the National Institute of General Medical Sciences (National Institutes of Health). M.X.R.-G. and M.A.F. were supported by grants from Science Foundation Ireland (12/IP/1637) and the Spanish Ministerio de Economia y Competitividad, Spain (MINECO-FEDER; BFU201236346 and BFU2015-66073-P) to MAF. MXRG was supported by a JAE DOC fellowship from the MINECO, Spain. F.V.-S. and M.A.P.-A. were supported by grant BIO2014-55946-P from MINECO-FEDER. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Molecular Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Temperature response es_ES
dc.subject Protein thermostability es_ES
dc.subject Salt bridges es_ES
dc.subject Intrinsically disordered proteins es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijms19082276 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-66073-P/ES/CARACTERIZANDO LOS MECANISMOS DE INNOVACION POR DUPLICACION GENICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2014-55946-P/ES/LAS GIBERELINAS EN EL CONTROL DE LA MORFOGENESIS DE LOS OVULOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2012-36346/ES/EL PAPEL DE LA DUPLICACION GENICA EN LA COMPLEJIDAD DE SISTEMAS BIOLOGICOS: RE-DIRECCION DE DINAMICAS MUTACIONALES Y ORIGEN DE INNOVACIONES BIOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/University of Nevada, Reno//P20GM103440/
dc.relation.projectID info:eu-repo/grantAgreement/University of Nevada, Reno//5P30GM110767-04/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Alvarez-Ponce, D.; Ruiz-González, M.; Vera Sirera, FJ.; Feyertag, F.; Perez Amador, MA.; Fares Riaño, MA. (2018). Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions. International Journal of Molecular Sciences. 19(8). https://doi.org/10.3390/ijms19082276 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/ 10.3390/ijms19082276 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 1422-0067 es_ES
dc.identifier.pmid 30081447 es_ES
dc.identifier.pmcid PMC6121531 es_ES
dc.relation.pasarela S\382355 es_ES
dc.contributor.funder Dirección General de Investigación Científica y Técnica es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Science Foundation Ireland es_ES
dc.contributor.funder University of Nevada, Reno es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder National Institutes of Health, EEUU es_ES
dc.contributor.funder Nevada IDeA Network of Biomedical Research Excellence es_ES
dc.description.references Karshikoff, A., & Ladenstein, R. (2001). Ion pairs and the thermotolerance of proteins from hyperthermophiles: a ‘traffic rule’ for hot roads. Trends in Biochemical Sciences, 26(9), 550-557. doi:10.1016/s0968-0004(01)01918-1 es_ES
dc.description.references Strop, P., & Mayo, S. L. (2000). Contribution of Surface Salt Bridges to Protein Stability†,‡. Biochemistry, 39(6), 1251-1255. doi:10.1021/bi992257j es_ES
dc.description.references PERUTZ, M. F., & RAIDT, H. (1975). Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature, 255(5505), 256-259. doi:10.1038/255256a0 es_ES
dc.description.references Argos, P., Rossmann, M. G., Grau, U. M., Zuber, H., Frank, G., & Tratschin, J. D. (1979). Thermal stability and protein structure. Biochemistry, 18(25), 5698-5703. doi:10.1021/bi00592a028 es_ES
dc.description.references Beeby, M., O’Connor, B. D., Ryttersgaard, C., Boutz, D. R., Perry, L. J., & Yeates, T. O. (2005). The Genomics of Disulfide Bonding and Protein Stabilization in Thermophiles. PLoS Biology, 3(9), e309. doi:10.1371/journal.pbio.0030309 es_ES
dc.description.references Haney, P. J., Badger, J. H., Buldak, G. L., Reich, C. I., Woese, C. R., & Olsen, G. J. (1999). Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proceedings of the National Academy of Sciences, 96(7), 3578-3583. doi:10.1073/pnas.96.7.3578 es_ES
dc.description.references Kreil, D. P. (2001). Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Research, 29(7), 1608-1615. doi:10.1093/nar/29.7.1608 es_ES
dc.description.references Tekaia, F., Yeramian, E., & Dujon, B. (2002). Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene, 297(1-2), 51-60. doi:10.1016/s0378-1119(02)00871-5 es_ES
dc.description.references Zeldovich, K. B., Berezovsky, I. N., & Shakhnovich, E. I. (2007). Protein and DNA Sequence Determinants of Thermophilic Adaptation. PLoS Computational Biology, 3(1), e5. doi:10.1371/journal.pcbi.0030005 es_ES
dc.description.references Chakravarty, S., & Varadarajan, R. (2000). Elucidation of determinants of protein stability through genome sequence analysis. FEBS Letters, 470(1), 65-69. doi:10.1016/s0014-5793(00)01267-9 es_ES
dc.description.references Cambillau, C., & Claverie, J.-M. (2000). Structural and Genomic Correlates of Hyperthermostability. Journal of Biological Chemistry, 275(42), 32383-32386. doi:10.1074/jbc.c000497200 es_ES
dc.description.references Burra, P. V., Kalmar, L., & Tompa, P. (2010). Reduction in Structural Disorder and Functional Complexity in the Thermal Adaptation of Prokaryotes. PLoS ONE, 5(8), e12069. doi:10.1371/journal.pone.0012069 es_ES
dc.description.references Wang, J., Yang, Y., Cao, Z., Li, Z., Zhao, H., & Zhou, Y. (2013). The Role of Semidisorder in Temperature Adaptation of Bacterial FlgM Proteins. Biophysical Journal, 105(11), 2598-2605. doi:10.1016/j.bpj.2013.10.026 es_ES
dc.description.references Vicedo, E., Schlessinger, A., & Rost, B. (2015). Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes. PLOS ONE, 10(8), e0133990. doi:10.1371/journal.pone.0133990 es_ES
dc.description.references Galea, C. A., High, A. A., Obenauer, J. C., Mishra, A., Park, C.-G., Punta, M., … Kriwacki, R. W. (2009). Large-Scale Analysis of Thermostable, Mammalian Proteins Provides Insights into the Intrinsically Disordered Proteome. Journal of Proteome Research, 8(1), 211-226. doi:10.1021/pr800308v es_ES
dc.description.references Tsvetkov, P., Myers, N., Moscovitz, O., Sharon, M., Prilusky, J., & Shaul, Y. (2012). Thermo-resistant intrinsically disordered proteins are efficient 20S proteasome substrates. Mol. BioSyst., 8(1), 368-373. doi:10.1039/c1mb05283g es_ES
dc.description.references Galea, C. A., Nourse, A., Wang, Y., Sivakolundu, S. G., Heller, W. T., & Kriwacki, R. W. (2008). Role of Intrinsic Flexibility in Signal Transduction Mediated by the Cell Cycle Regulator, p27Kip1. Journal of Molecular Biology, 376(3), 827-838. doi:10.1016/j.jmb.2007.12.016 es_ES
dc.description.references Van Noort, V., Bradatsch, B., Arumugam, M., Amlacher, S., Bange, G., Creevey, C., … Bork, P. (2013). Consistent mutational paths predict eukaryotic thermostability. BMC Evolutionary Biology, 13(1), 7. doi:10.1186/1471-2148-13-7 es_ES
dc.description.references Wang, G.-Z., & Lercher, M. J. (2010). Amino acid composition in endothermic vertebrates is biased in the same direction as in thermophilic prokaryotes. BMC Evolutionary Biology, 10(1), 263. doi:10.1186/1471-2148-10-263 es_ES
dc.description.references Windisch, H. S., Lucassen, M., & Frickenhaus, S. (2012). Evolutionary force in confamiliar marine vertebrates of different temperature realms: adaptive trends in zoarcid fish transcriptomes. BMC Genomics, 13(1), 549. doi:10.1186/1471-2164-13-549 es_ES
dc.description.references Albanèse, V., Yam, A. Y.-W., Baughman, J., Parnot, C., & Frydman, J. (2006). Systems Analyses Reveal Two Chaperone Networks with Distinct Functions in Eukaryotic Cells. Cell, 124(1), 75-88. doi:10.1016/j.cell.2005.11.039 es_ES
dc.description.references Berry, J., & Bjorkman, O. (1980). Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annual Review of Plant Physiology, 31(1), 491-543. doi:10.1146/annurev.pp.31.060180.002423 es_ES
dc.description.references Sueoka, N. (1961). CORRELATION BETWEEN BASE COMPOSITION OF DEOXYRIBONUCLEIC ACID AND AMINO ACID COMPOSITION OF PROTEIN. Proceedings of the National Academy of Sciences, 47(8), 1141-1149. doi:10.1073/pnas.47.8.1141 es_ES
dc.description.references Cherry, J. L. (2009). Highly Expressed and Slowly Evolving Proteins Share Compositional Properties with Thermophilic Proteins. Molecular Biology and Evolution, 27(3), 735-741. doi:10.1093/molbev/msp270 es_ES
dc.description.references The amino acid composition is different between the cytoplasmic and extracellular sides in membrane proteins. (1992). FEBS Letters, 303(2-3), 141-146. doi:10.1016/0014-5793(92)80506-c es_ES
dc.description.references Nakashima, H., & Nishikawa, K. (1994). Discrimination of Intracellular and Extracellular Proteins Using Amino Acid Composition and Residue-pair Frequencies. Journal of Molecular Biology, 238(1), 54-61. doi:10.1006/jmbi.1994.1267 es_ES
dc.description.references Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21(16), 3433-3434. doi:10.1093/bioinformatics/bti541 es_ES
dc.description.references Peng, Z., Uversky, V. N., & Kurgan, L. (2016). Genes encoding intrinsic disorder in Eukaryota have high GC content. Intrinsically Disordered Proteins, 4(1), e1262225. doi:10.1080/21690707.2016.1262225 es_ES
dc.description.references Yruela, I., & Contreras-Moreira, B. (2013). Genetic recombination is associated with intrinsic disorder in plant proteomes. BMC Genomics, 14(1), 772. doi:10.1186/1471-2164-14-772 es_ES
dc.description.references Paliy, O., Gargac, S. M., Cheng, Y., Uversky, V. N., & Dunker, A. K. (2008). Protein Disorder Is Positively Correlated with Gene Expression inEscherichia coli. Journal of Proteome Research, 7(6), 2234-2245. doi:10.1021/pr800055r es_ES
dc.description.references Singh, G. P., & Dash, D. (2008). How expression level influences the disorderness of proteins. Biochemical and Biophysical Research Communications, 371(3), 401-404. doi:10.1016/j.bbrc.2008.04.072 es_ES
dc.description.references Yang, J.-R., Liao, B.-Y., Zhuang, S.-M., & Zhang, J. (2012). Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. Proceedings of the National Academy of Sciences, 109(14), E831-E840. doi:10.1073/pnas.1117408109 es_ES
dc.description.references Hendsch, Z. S., & Tidor, B. (1994). Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Science, 3(2), 211-226. doi:10.1002/pro.5560030206 es_ES
dc.description.references Zhou, X.-X., Wang, Y.-B., Pan, Y.-J., & Li, W.-F. (2007). Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids, 34(1), 25-33. doi:10.1007/s00726-007-0589-x es_ES
dc.description.references Catanzano, F., Barone, G., Graziano, G., & Capasso, S. (1997). Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease A. Protein Science, 6(8), 1682-1693. doi:10.1002/pro.5560060808 es_ES
dc.description.references Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10(3), 195-205. doi:10.1038/nrg2526 es_ES
dc.description.references Bolser, D., Staines, D. M., Pritchard, E., & Kersey, P. (2016). Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data. Methods in Molecular Biology, 115-140. doi:10.1007/978-1-4939-3167-5_6 es_ES
dc.description.references Kasprzyk, A. (2003). EnsMart: A Generic System for Fast and Flexible Access to Biological Data. Genome Research, 14(1), 160-169. doi:10.1101/gr.1645104 es_ES
dc.description.references Hooper, C. M., Castleden, I. R., Tanz, S. K., Aryamanesh, N., & Millar, A. H. (2016). SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Research, 45(D1), D1064-D1074. doi:10.1093/nar/gkw1041 es_ES
dc.description.references R: A language and environment for statistical computing. R Foundation for Statistical Computinghttp://www.R-project.org/ es_ES
dc.description.references Kim, S. (2015). ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients. Communications for Statistical Applications and Methods, 22(6), 665-674. doi:10.5351/csam.2015.22.6.665 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem