- -

Iridium complexes catalysed the selective dehydrogenation of glucose to gluconic acid in water

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Iridium complexes catalysed the selective dehydrogenation of glucose to gluconic acid in water

Mostrar el registro completo del ítem

Borja, P.; Vicent, C.; Baya, M.; García Gómez, H.; Mata, JA. (2018). Iridium complexes catalysed the selective dehydrogenation of glucose to gluconic acid in water. Green Chemistry. 20(17):4094-4101. https://doi.org/10.1039/c8gc01933a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146716

Ficheros en el ítem

Metadatos del ítem

Título: Iridium complexes catalysed the selective dehydrogenation of glucose to gluconic acid in water
Autor: Borja, Pilar Vicent, Cristian Baya, Miguel García Gómez, Hermenegildo Mata, Jose A.
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] We describe an unprecedented catalytic dehydrogenation of glucose by homogeneous catalysts. Iridium(iii) complexes containing the fragment [Cp*Ir(NHC)](2+) (NHC = N-heterocyclic carbene ligand) are shown to be very ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Green Chemistry. (issn: 1463-9262 )
DOI: 10.1039/c8gc01933a
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8gc01933a
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-2-R/ES/APLICACIONES CATALITICAS DE COMPUESTOS ORGANOMETALICOS INMOVILIZADOS EN LA SUFPERFICIE DE GRAFENOS/
info:eu-repo/grantAgreement/MINECO//CTQ2015-67461-P/ES/COMPUESTOS ORGANOMETALICOS IMPLICADOS EN PROCESOS REDOX Y%2FO FOTOINDUCIDOS/
info:eu-repo/grantAgreement/DGA//E21/
info:eu-repo/grantAgreement/UJI//P1.1B2015-09/
info:eu-repo/grantAgreement/MINECO//CTQ2015-69153-C2-1-R/ES/EXPLOTANDO EL USO DEL GRAFENO EN CATALISIS. USO DEL GRAFENO COMO CARBOCATALIZADOR O COMO SOPORTE/
Agradecimientos:
The authors thank the MINECO (Severo Ochoa, CTQ2015-69153-C2-1-R, CTQ2015-69153-C2-2-R and CTQ2015-67461-P), Diputacion General de Aragon (Grupo Consolidado E21) and Universitat Jaume I (P1.1B2015-09) for financial support. ...[+]
Tipo: Artículo

References

Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d

Besson, M., Gallezot, P., & Pinel, C. (2013). Conversion of Biomass into Chemicals over Metal Catalysts. Chemical Reviews, 114(3), 1827-1870. doi:10.1021/cr4002269

Sheldon, R. A. (2014). Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem., 16(3), 950-963. doi:10.1039/c3gc41935e [+]
Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d

Besson, M., Gallezot, P., & Pinel, C. (2013). Conversion of Biomass into Chemicals over Metal Catalysts. Chemical Reviews, 114(3), 1827-1870. doi:10.1021/cr4002269

Sheldon, R. A. (2014). Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem., 16(3), 950-963. doi:10.1039/c3gc41935e

Mika, L. T., Cséfalvay, E., & Németh, Á. (2017). Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chemical Reviews, 118(2), 505-613. doi:10.1021/acs.chemrev.7b00395

Climent, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639d

Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084

Gallezot, P. (2012). Conversion of biomass to selected chemical products. Chem. Soc. Rev., 41(4), 1538-1558. doi:10.1039/c1cs15147a

Makhubela, B. C. E., & Darkwa, J. (2018). The Role of Noble Metal Catalysts in Conversion of Biomass and Bio-derived Intermediates to Fuels and Chemicals. Johnson Matthey Technology Review, 62(1), 4-31. doi:10.1595/205651317x696261

Gallezot, P. (2008). Catalytic Conversion of Biomass: Challenges and Issues. ChemSusChem, 1(8-9), 734-737. doi:10.1002/cssc.200800091

Geilen, F. M. A., Engendahl, B., Harwardt, A., Marquardt, W., Klankermayer, J., & Leitner, W. (2010). Selective and Flexible Transformation of Biomass-Derived Platform Chemicals by a Multifunctional Catalytic System. Angewandte Chemie International Edition, 49(32), 5510-5514. doi:10.1002/anie.201002060

Mirescu, A., Berndt, H., Martin, A., & Prüße, U. (2007). Long-term stability of a 0.45% Au/TiO2 catalyst in the selective oxidation of glucose at optimised reaction conditions. Applied Catalysis A: General, 317(2), 204-209. doi:10.1016/j.apcata.2006.10.016

BAATZ, C., & PRUSE, U. (2007). Preparation of gold catalysts for glucose oxidation by incipient wetness. Journal of Catalysis, 249(1), 34-40. doi:10.1016/j.jcat.2007.03.026

Önal, Y. (2004). Structure sensitivity and kinetics of ?-glucose oxidation to ?-gluconic acid over carbon-supported gold catalysts. Journal of Catalysis, 223(1), 122-133. doi:10.1016/j.jcat.2004.01.010

Biella, S., Prati, L., & Rossi, M. (2002). Selective Oxidation of D-Glucose on Gold Catalyst. Journal of Catalysis, 206(2), 242-247. doi:10.1006/jcat.2001.3497

Gallezot, P. (2007). Process options for converting renewable feedstocks to bioproducts. Green Chemistry, 9(4), 295. doi:10.1039/b615413a

Balaraman, E., Khaskin, E., Leitus, G., & Milstein, D. (2013). Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source. Nature Chemistry, 5(2), 122-125. doi:10.1038/nchem.1536

Zweifel, T., Naubron, J.-V., & Grützmacher, H. (2009). Catalyzed Dehydrogenative Coupling of Primary Alcohols with Water, Methanol, or Amines. Angewandte Chemie International Edition, 48(3), 559-563. doi:10.1002/anie.200804757

Fujita, K., Tamura, R., Tanaka, Y., Yoshida, M., Onoda, M., & Yamaguchi, R. (2017). Dehydrogenative Oxidation of Alcohols in Aqueous Media Catalyzed by a Water-Soluble Dicationic Iridium Complex Bearing a Functional N-Heterocyclic Carbene Ligand without Using Base. ACS Catalysis, 7(10), 7226-7230. doi:10.1021/acscatal.7b02560

Brewster, T. P., Ou, W. C., Tran, J. C., Goldberg, K. I., Hanson, S. K., Cundari, T. R., & Heinekey, D. M. (2014). Iridium, Rhodium, and Ruthenium Catalysts for the «Aldehyde–Water Shift» Reaction. ACS Catalysis, 4(9), 3034-3038. doi:10.1021/cs500843a

Dobereiner, G. E., Yuan, J., Schrock, R. R., Goldman, A. S., & Hackenberg, J. D. (2013). Catalytic Synthesis of n-Alkyl Arenes through Alkyl Group Cross-Metathesis. Journal of the American Chemical Society, 135(34), 12572-12575. doi:10.1021/ja4066392

Choi, J., MacArthur, A. H. R., Brookhart, M., & Goldman, A. S. (2011). Dehydrogenation and Related Reactions Catalyzed by Iridium Pincer Complexes. Chemical Reviews, 111(3), 1761-1779. doi:10.1021/cr1003503

Wang, C., & Xiao, J. (2017). Iridacycles for hydrogenation and dehydrogenation reactions. Chemical Communications, 53(24), 3399-3411. doi:10.1039/c7cc01103b

Wang, X., Wang, C., Liu, Y., & Xiao, J. (2016). Acceptorless dehydrogenation and aerobic oxidation of alcohols with a reusable binuclear rhodium(ii) catalyst in water. Green Chemistry, 18(17), 4605-4610. doi:10.1039/c6gc01272h

Sawama, Y., Morita, K., Yamada, T., Nagata, S., Yabe, Y., Monguchi, Y., & Sajiki, H. (2014). Rhodium-on-carbon catalyzed hydrogen scavenger- and oxidant-free dehydrogenation of alcohols in aqueous media. Green Chemistry, 16(7), 3439. doi:10.1039/c4gc00434e

Robbins, D. W., & Hartwig, J. F. (2011). A Simple, Multidimensional Approach to High-Throughput Discovery of Catalytic Reactions. Science, 333(6048), 1423-1427. doi:10.1126/science.1207922

Da Vià, L., Recchi, C., Davies, T. E., Greeves, N., & Lopez‐Sanchez, J. A. (2016). Visible‐Light‐Controlled Oxidation of Glucose using Titania‐Supported Silver Photocatalysts. ChemCatChem, 8(22), 3475-3483. doi:10.1002/cctc.201600775

Da Vià, L., Recchi, C., Gonzalez-Yañez, E. O., Davies, T. E., & Lopez-Sanchez, J. A. (2017). Visible light selective photocatalytic conversion of glucose by TiO2. Applied Catalysis B: Environmental, 202, 281-288. doi:10.1016/j.apcatb.2016.08.035

Monge, M. E., Pérez, J. J., Dwivedi, P., Zhou, M., McCarty, N. A., Stecenko, A. A., & Fernández, F. M. (2013). Ion mobility and liquid chromatography/mass spectrometry strategies for exhaled breath condensate glucose quantitation in cystic fibrosis studies. Rapid Communications in Mass Spectrometry, 27(20), 2263-2271. doi:10.1002/rcm.6683

Sandín-España, P., Mateo-Miranda, M., López-Goti, C., De Cal, A., & Alonso-Prados, J. L. (2016). Development of a rapid and direct method for the determination of organic acids in peach fruit using LC–ESI-MS. Food Chemistry, 192, 268-273. doi:10.1016/j.foodchem.2015.07.012

Bodachivskyi, I., Kuzhiumparambil, U., & Williams, D. B. G. (2018). Acid-Catalyzed Conversion of Carbohydrates into Value-Added Small Molecules in Aqueous Media and Ionic Liquids. ChemSusChem, 11(4), 642-660. doi:10.1002/cssc.201702016

Csabai, P., & Joó, F. (2004). Synthesis and Catalytic Properties of New Water-Soluble Ruthenium(II)−N-Heterocyclic Carbene Complexes. Organometallics, 23(23), 5640-5643. doi:10.1021/om049511a

Bellarosa, L., Díez, J., Gimeno, J., Lledós, A., Suárez, F. J., Ujaque, G., & Vicent, C. (2012). Highly Efficient Redox Isomerisation of Allylic Alcohols Catalysed by Pyrazole-Based Ruthenium(IV) Complexes in Water: Mechanisms of Bifunctional Catalysis in Water. Chemistry - A European Journal, 18(25), 7749-7765. doi:10.1002/chem.201103374

Schröder, D. (2012). Applications of Electrospray Ionization Mass Spectrometry in Mechanistic Studies and Catalysis Research. Accounts of Chemical Research, 45(9), 1521-1532. doi:10.1021/ar3000426

Vikse, K. L., Ahmadi, Z., & Scott McIndoe, J. (2014). The application of electrospray ionization mass spectrometry to homogeneous catalysis. Coordination Chemistry Reviews, 279, 96-114. doi:10.1016/j.ccr.2014.06.012

Yunker, L. P. E., Stoddard, R. L., & McIndoe, J. S. (2014). Practical approaches to the ESI-MS analysis of catalytic reactions. Journal of Mass Spectrometry, 49(1), 1-8. doi:10.1002/jms.3303

Kawahara, R., Fujita, K., & Yamaguchi, R. (2012). Dehydrogenative Oxidation of Alcohols in Aqueous Media Using Water-Soluble and Reusable Cp*Ir Catalysts Bearing a Functional Bipyridine Ligand. Journal of the American Chemical Society, 134(8), 3643-3646. doi:10.1021/ja210857z

Trincado, M., Banerjee, D., & Grützmacher, H. (2014). Molecular catalysts for hydrogen production from alcohols. Energy Environ. Sci., 7(8), 2464-2503. doi:10.1039/c4ee00389f

Li, H., & Hall, M. B. (2013). Mechanism of the Formation of Carboxylate from Alcohols and Water Catalyzed by a Bipyridine-Based Ruthenium Complex: A Computational Study. Journal of the American Chemical Society, 136(1), 383-395. doi:10.1021/ja410541v

Rodríguez-Lugo, R. E., Trincado, M., Vogt, M., Tewes, F., Santiso-Quinones, G., & Grützmacher, H. (2013). A homogeneous transition metal complex for clean hydrogen production from methanol–water mixtures. Nature Chemistry, 5(4), 342-347. doi:10.1038/nchem.1595

Vicent, C., & Gusev, D. G. (2016). ESI-MS Insights into Acceptorless Dehydrogenative Coupling of Alcohols. ACS Catalysis, 6(5), 3301-3309. doi:10.1021/acscatal.6b00623

Spasyuk, D., Vicent, C., & Gusev, D. G. (2015). Chemoselective Hydrogenation of Carbonyl Compounds and Acceptorless Dehydrogenative Coupling of Alcohols. Journal of the American Chemical Society, 137(11), 3743-3746. doi:10.1021/ja512389y

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem