- -

Glass wool: a novel support for heterogeneous catalysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Glass wool: a novel support for heterogeneous catalysis

Mostrar el registro completo del ítem

Elhage, A.; Wang, B.; Marina, N.; Marín García, ML.; Cruz, M.; Lanterna, AE.; Scaiano, JC. (2018). Glass wool: a novel support for heterogeneous catalysis. Chemical Science. 9(33):6844-6852. https://doi.org/10.1039/c8sc02115e

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/146879

Ficheros en el ítem

Metadatos del ítem

Título: Glass wool: a novel support for heterogeneous catalysis
Autor: Elhage, Ayda Wang, Bowen Marina, Nancy Marín García, Mª Luisa Cruz, Menandro Lanterna, Anabel E. Scaiano, Juan C.
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Heterogeneous catalysis presents significant advantages over homogeneous catalysis such as ease of separation and reuse of the catalyst. Here we show that a very inexpensive, manageable and widely available material ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemical Science. (issn: 2041-6520 )
DOI: 10.1039/c8sc02115e
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8sc02115e
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//BEST%2F2017%2F049/
Agradecimientos:
This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, the Canada Research Chairs Program and funding from Canada's International Development ...[+]
Tipo: Artículo

References

Davies, I. W., Matty, L., Hughes, D. L., & Reider, P. J. (2001). Are Heterogeneous Catalysts Precursors to Homogeneous Catalysts? Journal of the American Chemical Society, 123(41), 10139-10140. doi:10.1021/ja016877v

Conner, W. C., & Falconer, J. L. (1995). Spillover in Heterogeneous Catalysis. Chemical Reviews, 95(3), 759-788. doi:10.1021/cr00035a014

Elhage, A., Lanterna, A. E., & Scaiano, J. C. (2016). Tunable Photocatalytic Activity of Palladium-Decorated TiO2: Non-Hydrogen-Mediated Hydrogenation or Isomerization of Benzyl-Substituted Alkenes. ACS Catalysis, 7(1), 250-255. doi:10.1021/acscatal.6b02832 [+]
Davies, I. W., Matty, L., Hughes, D. L., & Reider, P. J. (2001). Are Heterogeneous Catalysts Precursors to Homogeneous Catalysts? Journal of the American Chemical Society, 123(41), 10139-10140. doi:10.1021/ja016877v

Conner, W. C., & Falconer, J. L. (1995). Spillover in Heterogeneous Catalysis. Chemical Reviews, 95(3), 759-788. doi:10.1021/cr00035a014

Elhage, A., Lanterna, A. E., & Scaiano, J. C. (2016). Tunable Photocatalytic Activity of Palladium-Decorated TiO2: Non-Hydrogen-Mediated Hydrogenation or Isomerization of Benzyl-Substituted Alkenes. ACS Catalysis, 7(1), 250-255. doi:10.1021/acscatal.6b02832

Cambié, D., Bottecchia, C., Straathof, N. J. W., Hessel, V., & Noël, T. (2016). Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chemical Reviews, 116(17), 10276-10341. doi:10.1021/acs.chemrev.5b00707

Lanterna, A. E., Elhage, A., & Scaiano, J. C. (2015). Heterogeneous photocatalytic C–C coupling: mechanism of plasmon-mediated reductive dimerization of benzyl bromides by supported gold nanoparticles. Catalysis Science & Technology, 5(9), 4336-4340. doi:10.1039/c5cy00655d

Wang, B., Durantini, J., Nie, J., Lanterna, A. E., & Scaiano, J. C. (2016). Heterogeneous Photocatalytic Click Chemistry. Journal of the American Chemical Society, 138(40), 13127-13130. doi:10.1021/jacs.6b06922

Sigma-Aldrich, Glass Wool, http://www.sigmaaldrich.com/catalog/product/supelco/20411?lang=en&region=CA , accessed September, 2017, 2017

Steyn, B., Oosthuizen, M. C., MacDonald, R., Theron, J., & Brözel, V. S. (2001). The use of glass wool as an attachment surface for studying phenotypic changes inPseudomonas aeruginosa biofilms by two-dimensional gel electrophoresis. PROTEOMICS, 1(7), 871-879. doi:10.1002/1615-9861(200107)1:7<871::aid-prot871>3.0.co;2-2

Nisnevitch, M., Kolog-Gulco, M., Trombka, D., Green, B. ., & Firer, M. . (2000). Immobilization of antibodies onto glass wool. Journal of Chromatography B: Biomedical Sciences and Applications, 738(2), 217-223. doi:10.1016/s0378-4347(99)00514-9

Matatov-Meytal, Y., & Sheintuch, M. (2002). Catalytic fibers and cloths. Applied Catalysis A: General, 231(1-2), 1-16. doi:10.1016/s0926-860x(01)00963-2

Barelko, V. V., Kuznetsov, M. V., Dorokhov, V. G., & Parkin, I. (2017). Glass-fiber woven catalysts as alternative catalytic materials for various industries. A review. Russian Journal of Physical Chemistry B, 11(4), 606-617. doi:10.1134/s1990793117040030

Macdonald, R. W., & Hayes, K. E. (1972). Glass wool as an oxidation catalyst. Journal of the Chemical Society, Chemical Communications, (18), 1030a. doi:10.1039/c3972001030a

Ramaswamy, G. K., Somasundaram, A., Kuppuswamy, B. K., & Velayudham, M. (2012). Glass Wool Catalysed Regioselective Isomerization of Styrene Oxides. Journal of the Chinese Chemical Society, 60(1), 97-102. doi:10.1002/jccs.201200269

YANG, H., FANG, Z., FU, X., & TONG, L. (2007). A Novel Glass Fiber-Supported Platinum Catalyst for Self-healing Polymer Composites: Structure and Reactivity. Chinese Journal of Catalysis, 28(11), 947-952. doi:10.1016/s1872-2067(07)60081-3

Bal’zhinimaev, B. S., Suknev, A. P., Gulyaeva, Y. K., & Kovalyov, E. V. (2015). Silicate fiberglass catalysts: From science to technology. Catalysis in Industry, 7(4), 267-274. doi:10.1134/s2070050415040029

Simonova, L. G., Barelko, V. V., Toktarev, A. V., Chernyshov, A. F., Chumachenko, V. A., & Bal’zhinimaev, B. S. (2002). Kinetics and Catalysis, 43(1), 61-66. doi:10.1023/a:1014249129178

Carrillo, A. I., Stamplecoskie, K. G., Marin, M. L., & Scaiano, J. C. (2014). ‘From the mole to the molecule’: ruthenium catalyzed nitroarene reduction studied with ‘bench’, high-throughput and single molecule fluorescence techniques. Catal. Sci. Technol., 4(7), 1989-1996. doi:10.1039/c4cy00018h

Morgan, D. J. (2015). Resolving ruthenium: XPS studies of common ruthenium materials. Surface and Interface Analysis, 47(11), 1072-1079. doi:10.1002/sia.5852

Park, K. C., Jang, I. Y., Wongwiriyapan, W., Morimoto, S., Kim, Y. J., Jung, Y. C., … Endo, M. (2010). Carbon-supported Pt–Ru nanoparticles prepared in glyoxylate-reduction system promoting precursor–support interaction. Journal of Materials Chemistry, 20(25), 5345. doi:10.1039/b923153f

Bock, C., Paquet, C., Couillard, M., Botton, G. A., & MacDougall, B. R. (2004). Size-Selected Synthesis of PtRu Nano-Catalysts:  Reaction and Size Control Mechanism. Journal of the American Chemical Society, 126(25), 8028-8037. doi:10.1021/ja0495819

Espinós, J. P., Morales, J., Barranco, A., Caballero, A., Holgado, J. P., & González-Elipe, A. R. (2002). Interface Effects for Cu, CuO, and Cu2O Deposited on SiO2and ZrO2. XPS Determination of the Valence State of Copper in Cu/SiO2and Cu/ZrO2Catalysts. The Journal of Physical Chemistry B, 106(27), 6921-6929. doi:10.1021/jp014618m

Klyushin, A. Y., Rocha, T. C. R., Hävecker, M., Knop-Gericke, A., & Schlögl, R. (2014). A near ambient pressure XPS study of Au oxidation. Physical Chemistry Chemical Physics, 16(17), 7881. doi:10.1039/c4cp00308j

Higman, C. S., Lanterna, A. E., Marin, M. L., Scaiano, J. C., & Fogg, D. E. (2016). Catalyst Decomposition during Olefin Metathesis Yields Isomerization-Active Ruthenium Nanoparticles. ChemCatChem, 8(15), 2446-2449. doi:10.1002/cctc.201600738

Bedford, R. B., Cazin, C. S. J., & Holder, D. (2004). The development of palladium catalysts for CC and Cheteroatom bond forming reactions of aryl chloride substrates. Coordination Chemistry Reviews, 248(21-24), 2283-2321. doi:10.1016/j.ccr.2004.06.012

CRC Handbook of Chemistry and Physics , ed. D. R. Lide , Taylor and Francis Group , Boca Raton, FL , 88th edn, 2007 , p. 2640

Sahoo, B., Surkus, A.-E., Pohl, M.-M., Radnik, J., Schneider, M., Bachmann, S., … Beller, M. (2017). A Biomass-Derived Non-Noble Cobalt Catalyst for Selective Hydrodehalogenation of Alkyl and (Hetero)Aryl Halides. Angewandte Chemie, 129(37), 11394-11399. doi:10.1002/ange.201702478

Devery, J. J., Nguyen, J. D., Dai, C., & Stephenson, C. R. J. (2016). Light-Mediated Reductive Debromination of Unactivated Alkyl and Aryl Bromides. ACS Catalysis, 6(9), 5962-5967. doi:10.1021/acscatal.6b01914

Liao, L., Zhang, Q., Su, Z., Zhao, Z., Wang, Y., Li, Y., … Bao, J. (2013). Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nature Nanotechnology, 9(1), 69-73. doi:10.1038/nnano.2013.272

Hainer, A. S., Hodgins, J. S., Sandre, V., Vallieres, M., Lanterna, A. E., & Scaiano, J. C. (2018). Photocatalytic Hydrogen Generation Using Metal-Decorated TiO2: Sacrificial Donors vs True Water Splitting. ACS Energy Letters, 3(3), 542-545. doi:10.1021/acsenergylett.8b00152

Elhage, A., Lanterna, A. E., & Scaiano, J. C. (2018). Light-Induced Sonogashira C–C Coupling under Mild Conditions Using Supported Palladium Nanoparticles. ACS Sustainable Chemistry & Engineering, 6(2), 1717-1722. doi:10.1021/acssuschemeng.7b02992

Roy, P., Periasamy, A. P., Liang, C.-T., & Chang, H.-T. (2013). Synthesis of Graphene-ZnO-Au Nanocomposites for Efficient Photocatalytic Reduction of Nitrobenzene. Environmental Science & Technology, 47(12), 6688-6695. doi:10.1021/es400422k

Zhou, B., Song, J., Zhou, H., Wu, L., Wu, T., Liu, Z., & Han, B. (2015). Light-driven integration of the reduction of nitrobenzene to aniline and the transformation of glycerol into valuable chemicals in water. RSC Advances, 5(46), 36347-36352. doi:10.1039/c5ra06354j

Zhu, H., Ke, X., Yang, X., Sarina, S., & Liu, H. (2010). Reduction of Nitroaromatic Compounds on Supported Gold Nanoparticles by Visible and Ultraviolet Light. Angewandte Chemie International Edition, 49(50), 9657-9661. doi:10.1002/anie.201003908

Selvam, K., Sakamoto, H., Shiraishi, Y., & Hirai, T. (2015). Photocatalytic secondary amine synthesis from azobenzenes and alcohols on TiO2 loaded with Pd nanoparticles. New Journal of Chemistry, 39(4), 2856-2860. doi:10.1039/c5nj00158g

Sarina, S., Waclawik, E. R., & Zhu, H. (2013). Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation. Green Chemistry, 15(7), 1814. doi:10.1039/c3gc40450a

Wang, L., Pan, X., Zhao, Y., Chen, Y., Zhang, W., Tu, Y., … Zhu, X. (2015). A Straightforward Protocol for the Highly Efficient Preparation of Main-Chain Azo Polymers Directly from Bisnitroaromatic Compounds by the Photocatalytic Process. Macromolecules, 48(5), 1289-1295. doi:10.1021/acs.macromol.5b00048

Bandara, H. M. D., & Burdette, S. C. (2012). Photoisomerization in different classes of azobenzene. Chem. Soc. Rev., 41(5), 1809-1825. doi:10.1039/c1cs15179g

McGilvray, K. L., Decan, M. R., Wang, D., & Scaiano, J. C. (2006). Facile Photochemical Synthesis of Unprotected Aqueous Gold Nanoparticles. Journal of the American Chemical Society, 128(50), 15980-15981. doi:10.1021/ja066522h

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem