- -

Characterizations of k-commutative equalities for some outer generalized inverses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterizations of k-commutative equalities for some outer generalized inverses

Mostrar el registro completo del ítem

Ferreyra, DE.; Levis, F.; Thome, N. (2018). Characterizations of k-commutative equalities for some outer generalized inverses. Linear and Multilinear Algebra. 1-16. https://doi.org/10.1080/03081087.2018.1500994

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147547

Ficheros en el ítem

Metadatos del ítem

Título: Characterizations of k-commutative equalities for some outer generalized inverses
Autor: Ferreyra, David Eduardo Levis, Fabian Thome, Néstor
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] In this paper, we present necessary and sufficient conditions for the k-commutative equality , where X is an outer generalized inverse of the square matrix A. Also, we give new representations for core EP, DMP, and ...[+]
Palabras clave: Core inverse , Core EP inverse , DMP inverse , CMP inverse , K-commutative equalities
Derechos de uso: Reserva de todos los derechos
Fuente:
Linear and Multilinear Algebra. (issn: 0308-1087 )
DOI: 10.1080/03081087.2018.1500994
Editorial:
Taylor & Francis
Versión del editor: https://doi.org/10.1080/03081087.2018.1500994
Código del Proyecto:
info:eu-repo/grantAgreement/UNLPam//155%2F14/
info:eu-repo/grantAgreement/CONICET//PIP 11220150100433CO/
info:eu-repo/grantAgreement/UNRC//PPI 18%2FC472/
info:eu-repo/grantAgreement/MINECO//MTM2013-43678-P/ES/ANALISIS DE MODELOS MATEMATICOS CON COEFICIENTES MATRICIALES: FUNDAMENTOS TEORICOS Y APLICACIONES/
info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/
Agradecimientos:
D. E. Ferreyra F. E. Levis Partially supported by a Consejo Nacional de Investigaciones Científicas y Técnicas CONICET s Posdoctoral Research Fellowship, UNRC [grant number PPI 18/C472] and CONICET [grant number PIP ...[+]
Tipo: Artículo

References

Baksalary, O. M., & Trenkler, G. (2010). Core inverse of matrices. Linear and Multilinear Algebra, 58(6), 681-697. doi:10.1080/03081080902778222

Manjunatha Prasad, K., & Mohana, K. S. (2013). Core–EP inverse. Linear and Multilinear Algebra, 62(6), 792-802. doi:10.1080/03081087.2013.791690

Malik, S. B., & Thome, N. (2014). On a new generalized inverse for matrices of an arbitrary index. Applied Mathematics and Computation, 226, 575-580. doi:10.1016/j.amc.2013.10.060 [+]
Baksalary, O. M., & Trenkler, G. (2010). Core inverse of matrices. Linear and Multilinear Algebra, 58(6), 681-697. doi:10.1080/03081080902778222

Manjunatha Prasad, K., & Mohana, K. S. (2013). Core–EP inverse. Linear and Multilinear Algebra, 62(6), 792-802. doi:10.1080/03081087.2013.791690

Malik, S. B., & Thome, N. (2014). On a new generalized inverse for matrices of an arbitrary index. Applied Mathematics and Computation, 226, 575-580. doi:10.1016/j.amc.2013.10.060

Mehdipour, M., & Salemi, A. (2017). On a new generalized inverse of matrices. Linear and Multilinear Algebra, 66(5), 1046-1053. doi:10.1080/03081087.2017.1336200

Malik, S. B., Rueda, L., & Thome, N. (2016). The class ofm-EPandm-normal matrices. Linear and Multilinear Algebra, 64(11), 2119-2132. doi:10.1080/03081087.2016.1139037

Wang, H. (2016). Core-EP decomposition and its applications. Linear Algebra and its Applications, 508, 289-300. doi:10.1016/j.laa.2016.08.008

Wang H, Chen J. Weak group inverse. Available from: http://arxiv.org/abs/1704.08403v1

Wei, Y. (1998). A characterization and representation of the generalized inverse A(2)T,S and its applications. Linear Algebra and its Applications, 280(2-3), 87-96. doi:10.1016/s0024-3795(98)00008-1

Rakić, D. S., Dinčić, N. Č., & Djordjević, D. S. (2014). Core inverse and core partial order of Hilbert space operators. Applied Mathematics and Computation, 244, 283-302. doi:10.1016/j.amc.2014.06.112

Stanimirović, P. S., Katsikis, V. N., & Ma, H. (2016). Representations and properties of theW-Weighted Drazin inverse. Linear and Multilinear Algebra, 65(6), 1080-1096. doi:10.1080/03081087.2016.1228810

Ferreyra, D. E., Levis, F. E., & Thome, N. (2017). Revisiting the core EP inverse and its extension to rectangular matrices. Quaestiones Mathematicae, 41(2), 265-281. doi:10.2989/16073606.2017.1377779

Deng, C. Y., & Du, H. K. (2009). REPRESENTATIONS OF THE MOORE-PENROSE INVERSE OF 2×2 BLOCK OPERATOR VALUED MATRICES. Journal of the Korean Mathematical Society, 46(6), 1139-1150. doi:10.4134/jkms.2009.46.6.1139

Wang, H., & Liu, X. (2014). Characterizations of the core inverse and the core partial ordering. Linear and Multilinear Algebra, 63(9), 1829-1836. doi:10.1080/03081087.2014.975702

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem