Mostrar el registro sencillo del ítem
dc.contributor.author | Sánchez-Fontes, E. | es_ES |
dc.contributor.author | Avila Vilchis, J. C. | es_ES |
dc.contributor.author | Vilchis-González, A. H. | es_ES |
dc.contributor.author | Saldivar, B. | es_ES |
dc.contributor.author | Jacinto-Villegas, J. M. | es_ES |
dc.contributor.author | Martínez-Mendez, R. | es_ES |
dc.date.accessioned | 2020-07-08T12:23:41Z | |
dc.date.available | 2020-07-08T12:23:41Z | |
dc.date.issued | 2020-07-01 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/147665 | |
dc.description.abstract | [ES] En los últimos años, diferentes estrategias y modelos matemáticos se han desarrollado para el análisis y control de vehículos aéreos no tripulados. El presente artículo amplía este panorama al enfocarse en un sistema aéreo no tripulado estable por construcción. Gracias a su diseño, el sistema reportado disipa la energía que recibe por la acción de perturbaciones externas. El sistema propuesto cuenta con un rotor único para el desarrollo de diferentes tipos de vuelo. Este artículo reporta el concepto de diseño del sistema aéreo no tripulado, la estructura de su modelo dinámico de nueve grados de libertad, un conjunto de simulaciones numéricas que permiten analizar el comportamiento del modelo desarrollado y los primeros resultados experimentales que validan la estabilidad por construcción del vehículo aéreo autónomo. Los dos aspectos más significativos e innovadores reportados en este artículo son el uso de un rotor único orientable para la ejecución de diferentes modos de vuelo y la propiedad inherente del sistema tal que sus estructuras, externa e interna, son estables por construcción. | es_ES |
dc.description.abstract | [EN] In recent years, different strategies and mathematical models have been developed in order to analyze and control unmanned aerial vehicles. This article expands this panorama by focusing on a, stable by construction, unmanned aerial system. Thanks to its design, the reported system dissipates the energy received by the action of external disturbances. The proposed vehicle has a unique rotor in order to perform different flight modes. This article reports the design concept of the aerial system, the mathematical structure of its nine degrees of freedom dynamic model, a set of numerical simulations allowing the analysis of the behavior of the developed model and the first experimental results that validate the stability, by construction, of the aerial vehicle. The two most significant and innovative aspects reported in this article are the use of a single orientable rotor to perform different flight modes and the inherent property of the system that makes it stable by construction. | es_ES |
dc.description.sponsorship | Este trabajo fue apoyado por la Universidad Autónoma del Estado de México bajo el proyecto de investigación: Desarrollo de un Vehículo Esférico Aéreo Autónomo con clave 3818/2014/CIB. Eduardo Sánchez Fontes agradece el financiamiento por la beca CONACYT CVU 553663. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Stability | es_ES |
dc.subject | Unmanned Aerial Vehicles (UAVs) | es_ES |
dc.subject | Dynamic model | es_ES |
dc.subject | Actuators | es_ES |
dc.subject | Estabilidad | es_ES |
dc.subject | Vehículo aéreo no tripulado (VANT) | es_ES |
dc.subject | Modelo Dinámico | es_ES |
dc.subject | Actuadores | es_ES |
dc.subject | Sistemas multicuerpo | es_ES |
dc.subject | Sistemas subactuados | es_ES |
dc.subject | Simulación de sistemas | es_ES |
dc.title | Nuevo vehículo aéreo autónomo estable por construcción: configuración y modelo dinámico | es_ES |
dc.title.alternative | New stable by construction autonomous aerial vehicle: configuration and dynamic model. | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2020.11603 | |
dc.relation.projectID | info:eu-repo/grantAgreement/UAEM//3818%2F2014%2FCIB/MX/Desarrollo de un Vehículo Esférico Aéreo Autónomo/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//CVU-553663/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Sánchez-Fontes, E.; Avila Vilchis, JC.; Vilchis-González, AH.; Saldivar, B.; Jacinto-Villegas, JM.; Martínez-Mendez, R. (2020). Nuevo vehículo aéreo autónomo estable por construcción: configuración y modelo dinámico. Revista Iberoamericana de Automática e Informática industrial. 17(3). https://doi.org/10.4995/riai.2020.11603 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2020.11603 | es_ES |
dc.description.upvformatpfin | 275 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 3 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\11603 | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.contributor.funder | Universidad Autónoma del Estado de México | es_ES |
dc.description.references | Apkarian, J., Sep. 2010. Aerial vehicle. Patent US 2010/0224723 A1, Bereskin and Parr LLP/S.E.N.C.R.L., s.r.l. 40 King Street West, Box 401 Toronto, onM5H 3Y2. | es_ES |
dc.description.references | Austin, R., 2010. Unmanned Aircraft Systems: UAVs Design, Development and Deployment. AIAA education series. American Institute of Aeronautics and Astronautics. https://doi.org/10.1002/9780470664797 | es_ES |
dc.description.references | Avila Vilchis, J. C., Sanchez-Fontes, E., Vilchis González, A. H., Saldivar, B., Martinez-Mendez, R., 2018. Dispositivo aéreo de rotor único. Patent application MX/a/2018/012344, Universidad Autónoma del Estado de México, México. | es_ES |
dc.description.references | Briod, A., Klaptocz, A., Zu_erey, J. C., Floreano, D., Jul. 2012. The airburr: A flying robot that can exploit collisions. In: International Conference on Complex Medical Engineering (CME). pp. 569-574. https://doi.org/10.1109/iccme.2012.6275674 | es_ES |
dc.description.references | Briod, A., Przemyslaw, K., Christophe, Z. J., Dario, F., 2014. A collision-resilient flying robot. Journal of Field Robotics 31 (4), 496-509. https://doi.org/10.1002/rob.21495 | es_ES |
dc.description.references | Briod, A., Przemyslaw, K. M., Adam, K., Jean-Christophe, Z., Dario, F., Dec. 2015. Vertical take-off and landing aerrial vehicle. Patent US 2015/0360776 A1, Ecole Polytechnique Federale de Lausanne (EPFL), Washington, DC: US. | es_ES |
dc.description.references | Daler, L., Garnier, A., Briod, A., Jun. 2016. Vertical take-off and landing aerial vehicle. Patent US 2016/0001875 A1, Ecole Polytechnique Federale De Lausanne, Washington, DC: US. | es_ES |
dc.description.references | Elfeky, M., Elshafei, M., Saif, A.-W. A., Al-Malki, M. F., Aug. 2016. Modeling and simulation of quadrotor uav with tilting rotors. International Journal of Control, Automation and Systems 14 (4), 1047-1055. https://doi.org/10.1007/s12555-015-0064-5 | es_ES |
dc.description.references | Escareño, J., Salazar, S., Lozano, R., 2006a. Modelling and control of a convertible VTOL aircraft. In: Proceedings of the 45th IEEE Conference on Decision and Control. pp. 69-74. https://doi.org/10.1109/CDC.2006.376915 | es_ES |
dc.description.references | Escareño, J., Sanchez, A., Garcia, O., Lozano, R., 2008b. Triple tilting rotor mini-uav: Modeling and embedded control of the attitude. In: American Control Conference. pp. 3476-3481. https://doi.org/10.1109/ACC.2008.4587031 | es_ES |
dc.description.references | Flores, G., Lozano, R., 2013. Transition flight control of the quad-tilting rotor convertible mav. In: International Conference on Unmanned Aircraft Systems (ICUAS). pp. 789-794. https://doi.org/10.1109/ICUAS.2013.6564761 | es_ES |
dc.description.references | Garcia, P., Lozano, R., Dzul, A., 2006. Modelling and control of mini-flying machines. Vol. 48. Springer London. https://doi.org/10.1109/taes.2012.6324687 | es_ES |
dc.description.references | Jacinto-Villegas, J. M., Satler, M., Filippeschi, A., Bergamasco, M., Ragaglia, M., Argiolas, A., Niccolini, M., Avizzano, C. A., Oct. 2017. A novel wearable haptic controller for teleoperating robotic platforms. IEEE Robotics and Automation Letters 2 (4), 2072-2079. https://doi.org/10.1109/LRA.2017.2720850 | es_ES |
dc.description.references | Keith, C., S. Repasky, K., L. Lawrence, R., Jay, S., Carlsten, J., 2009. Monitoring effects of a controlled subsurface carbon dioxide release on vegetation using a hyperspectral imager. International Journal of Greenhouse Gas Control 3, 626-632. https://doi.org/10.1016/j.ijggc.2009.03.003 | es_ES |
dc.description.references | Klaptock, A., 2012. Design of flying robots for collision absorption and self-recovery. Ph.D. thesis, École Polytechnique Fédérale de Lausanne-Switzerland. https://doi.org/10.1002/erv.1116 | es_ES |
dc.description.references | Lefort, P., Hamann, J., 1995. L'Hélicoptère. Théorie et Pratique. CHIRON, Paris. | es_ES |
dc.description.references | Lin, C. E., Supsukbaworn, T., 2017. Development of dual power multirotor system. International Journal of Aerospace Engineering 2017, 1-19. https://doi.org/10.1155/2017/9821401 | es_ES |
dc.description.references | Liu, Z., He, Y., Yang, L., Han, J., 2017. Control techniques of tilt rotor unmanned aerial vehicle systems: A review. Chinese Journal of Aeronautics 30 (1), 135-148. https://doi.org/https://doi.org/10.1016/j.cja.2016.11.001 | es_ES |
dc.description.references | Lozano, R., 2013. Unmanned Aerial Vehicles: Embedded Control. Vol. 42 of ISTE. Wiley. https://doi.org/10.1002/esp.4142 | es_ES |
dc.description.references | Mendelow, B., Muir, P., Boshielo, B., Robertson, J., 2007. Development of e-juba, a preliminary proof of concept unmanned aerial vehicle designed to facilitate the transportation of microbiological test samples from remote rural clinics to national health laboratory service laboratories. South African Medical Journal 15, 1021-1030. https://doi.org/10.1002/lom3.10222 | es_ES |
dc.description.references | Mohamed, M. K., Lanzon, A., 2012. Design and control of novel tri-rotor uav. In: Proceedings of 2012 UKACC International Conference on Control. pp. 304-309. https://doi.org/10.1109/CONTROL.2012.6334647 | es_ES |
dc.description.references | Motlagh, N. H., Bagaa, M., Taleb, T., Feb. 2017. UAV-based iot platform: A crowd surveillance use case. IEEE Communications Magazine 55 (2), 128-134. https://doi.org/10.1109/MCOM.2017.1600587CM | es_ES |
dc.description.references | Nex, F., Remondino, F., Mar. 2014. UAV for 3d mapping applications: A review. Applied Geomatics 6 (1), 1-15. https://doi.org/10.1007/s12518-013-0120-x | es_ES |
dc.description.references | Perlo, P., Bollea, D., Finizio, R., Carvignese, C., Balocco, E., Dec. 2005. VTOL micro-aircraft. Patent US 6,976,653 B2, C.R.F Societa Consortile per Azioni, Washington, DC: US. | es_ES |
dc.description.references | Prouty, R., Jan. 2003. Helicopter performance, Stability, and Control. Krieger. | es_ES |
dc.description.references | Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., Sarazzi, D., Jan. 2011. UAV photogrammetry for mapping and 3d modeling-current status and future perspectives. In: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVIII-1/C22. pp. 25-31. https://doi.org/10.5194/isprsarchives-xxxviii-1-c22-25-2011 | es_ES |
dc.description.references | Sanchez, A., Escareño, J., Garcia, O., Lozano, R., 2008. Autonomous hovering of a noncyclic tiltrotor UAV: Modeling, control and implementation. IFAC Proceedings Volumes 41 (2), 803 - 808. https://doi.org/https://doi.org/10.3182/20080706-5-KR-1001.00138 | es_ES |
dc.description.references | Sanchez-Fontes, E., Jan. 2016. Diseño y modelado de un vehículo esférico aéreo autónomo. Master's thesis, Facultad de Ingeniería de la Universidad Autónoma del Estado de México, Toluca, México. | es_ES |
dc.description.references | Segui-Gasco, P., Al-Rihani, Y., Shin, H. S., Savvaris, A., May 2014. A novel actuation concept for a multi rotor uav. In: International Conference on Unmanned Aircraft Systems (ICUAS). Vol. 74. pp. 173-191. https://doi.org/10.1007/s10846-013-9987-3 | es_ES |
dc.description.references | Senkul, A. F., Altug, E., 2016. System design of a novel tilt-roll rotor quadrotor UAV. Journal of Intelligent & Robotic Systems 84 (1), 575-599. https://doi.org/10.1007/s10846-015-0301-4 | es_ES |
dc.description.references | Shames, I. H., Apr. 1996. Engineering Mechanics: Statics and Dynamics, 4th Edition. Prentice Hall. | es_ES |
dc.description.references | Tilli, A., Montanari, M., Jan. 2001. A low-noise estimator of angular speed and acceleration from shaft encoder measurements. ATKAAF 42, 169-176. | es_ES |
dc.description.references | Villegas, J. M. J., Avizzano, C. A., Ruffaldi, E., Bergamasco, M., 2015. A low cost open-controller for interactive robotic system. In: 2015 IEEE European Modelling Symposium (EMS). pp. 462-468. https://doi.org/10.1109/EMS.2015.75 | es_ES |
dc.description.references | Watts, A. C., Perry, J. H., Smith, S. E., Burgess, M. A., Wilkinson, B. E., Szantoi, Z., Ifju, P. G., Percival, H. F., 2010. Small unmanned aircraft systems for low-altitude aerial surveys. Journal of Wildlife Management 74 (7), 1614-1619. https://doi.org/10.2193/2009-425 | es_ES |
dc.description.references | Whittaker, E., McCrae, W., Feb. 1989. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th Edition. Cambridge University Press. https://doi.org/10.1017/CBO9780511608797 | es_ES |
dc.description.references | Yuksek, B., Vuruskan, A., Ozdemir, U., Yukselen, M. A., Inalhan, G., 2016. Transition flight modeling of a fixed-wing VTOL UAV. Journal of Intelligent & Robotic Systems 84 (1), 83-105. https://doi.org/10 .1007/s10846-015-0325-9 | es_ES |