- -

Viroid diseases in pome and stone fruit trees and Koch s postulates: a critical assessment

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Viroid diseases in pome and stone fruit trees and Koch s postulates: a critical assessment

Mostrar el registro completo del ítem

Di Serio, F.; Ambros Palaguerri, S.; Sano, T.; Flores Pedauye, R.; Navarro, B. (2018). Viroid diseases in pome and stone fruit trees and Koch s postulates: a critical assessment. Viruses. 10(11). https://doi.org/10.3390/v10110612

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/147686

Ficheros en el ítem

Metadatos del ítem

Título: Viroid diseases in pome and stone fruit trees and Koch s postulates: a critical assessment
Autor: Di Serio, Francesco Ambros Palaguerri, Silvia Sano, T Flores Pedauye, Ricardo Navarro, B
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Composed of a naked circular non-protein-coding genomic RNA, counting only a few hundred nucleotides, viroids¿the smallest infectious agents known so far¿are able to replicate and move systemically in herbaceous and ...[+]
Palabras clave: Viroid pathogenesis , Symptoms , Woody plants , ADFVd , AFCVd , AHVd , ASSVd , HSVd , PBCVd , PLMVd
Derechos de uso: Reconocimiento (by)
Fuente:
Viruses. (issn: 1999-4915 )
DOI: 10.3390/v10110612
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/v10110612
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/734736/EU/Virus free Fruit Nurseries/
Agradecimientos:
This project has received funding from the European Union's Horizon 2020 Research and Innovation Scientific Exchange Program under the Marie Sklodowska-Curie grant agreement No. 734736. This publication reflects only the ...[+]
Tipo: Artículo

References

Diener, T. O. (1971). Potato spindle tuber «virus». Virology, 45(2), 411-428. doi:10.1016/0042-6822(71)90342-4

Flores, R., Minoia, S., Carbonell, A., Gisel, A., Delgado, S., López-Carrasco, A., … Di Serio, F. (2015). Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Research, 209, 136-145. doi:10.1016/j.virusres.2015.02.027

López-Carrasco, A., & Flores, R. (2016). Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A «naked» rod-like conformation similar but not identical to that observed in vitro. RNA Biology, 14(8), 1046-1054. doi:10.1080/15476286.2016.1223005 [+]
Diener, T. O. (1971). Potato spindle tuber «virus». Virology, 45(2), 411-428. doi:10.1016/0042-6822(71)90342-4

Flores, R., Minoia, S., Carbonell, A., Gisel, A., Delgado, S., López-Carrasco, A., … Di Serio, F. (2015). Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Research, 209, 136-145. doi:10.1016/j.virusres.2015.02.027

López-Carrasco, A., & Flores, R. (2016). Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A «naked» rod-like conformation similar but not identical to that observed in vitro. RNA Biology, 14(8), 1046-1054. doi:10.1080/15476286.2016.1223005

López-Carrasco, A., & Flores, R. (2017). The predominant circular form of avocado sunblotch viroid accumulates in planta as a free RNA adopting a rod-shaped secondary structure unprotected by tightly bound host proteins. Journal of General Virology, 98(7), 1913-1922. doi:10.1099/jgv.0.000846

Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243

Di Serio, F., Flores, R., Verhoeven, J. T. J., Li, S.-F., Pallás, V., Randles, J. W., … Owens, R. A. (2014). Current status of viroid taxonomy. Archives of Virology, 159(12), 3467-3478. doi:10.1007/s00705-014-2200-6

Di Serio, F., Li, S.-F., Matoušek, J., Owens, R. A., Pallás, V., … Randles, J. W. (2018). ICTV Virus Taxonomy Profile: Avsunviroidae. Journal of General Virology, 99(5), 611-612. doi:10.1099/jgv.0.001045

Diener, T. O., Smith, D. R., & O’Brien, M. J. (1972). Potato spindle tuber viroid. Virology, 48(3), 844-846. doi:10.1016/0042-6822(72)90166-3

Diener, T. O. (1972). Potato spindle tuber viroid. Virology, 50(2), 606-609. doi:10.1016/0042-6822(72)90412-6

Semancik, J. S. (1970). Properties of the Infectious Forms of Exocortis Virus of Citrus. Phytopathology, 60(4), 732. doi:10.1094/phyto-60-732

Semancik, J. S., Morris, T. J., & Weathers, L. G. (1973). Structure and conformation of low molecular weight pathogenic RNA from exocortis disease. Virology, 53(2), 448-456. doi:10.1016/0042-6822(73)90224-9

Bos, L. (1981). Hundred years of Koch’s Postulates and the history of etiology in plant virus research. Netherlands Journal of Plant Pathology, 87(3), 91-110. doi:10.1007/bf01976645

Schumacher, J., Randles, J. W., & Riesner, D. (1983). A two-dimensional electrophoretic technique for the detection of circular viroids and virusoids. Analytical Biochemistry, 135(2), 288-295. doi:10.1016/0003-2697(83)90685-1

Flores, R., Duran-Vila, N., Pallas, V., & Semancik, J. S. (1985). Detection of Viroid and Viroid-like RNAs from Grapevine. Journal of General Virology, 66(10), 2095-2102. doi:10.1099/0022-1317-66-10-2095

Serio, F. D., Malfitano, M., Alioto, D., Ragozzino, A., Desvignes, J. C., & Flores, R. (2001). Apple dimple fruit viroid: Fulfillment of Koch’s Postulates and Symptom Characteristics. Plant Disease, 85(2), 179-182. doi:10.1094/pdis.2001.85.2.179

Pallas, V., Navarro, A., & Flores, R. (1987). Isolation of a Viroid-like RNA from Hop Different from Hop Stunt Viroid. Journal of General Virology, 68(12), 3201-3205. doi:10.1099/0022-1317-68-12-3201

Navarro, B., & Flores, R. (1997). Chrysanthemum chlorotic mottle viroid: Unusual structural properties of a subgroup of self-cleaving viroids with hammerhead ribozymes. Proceedings of the National Academy of Sciences, 94(21), 11262-11267. doi:10.1073/pnas.94.21.11262

De la Pena, M., Navarro, B., & Flores, R. (1999). Mapping the molecular determinant of pathogenicity in a hammerhead viroid: A tetraloop within the in vivo branched RNA conformation. Proceedings of the National Academy of Sciences, 96(17), 9960-9965. doi:10.1073/pnas.96.17.9960

Bellamy, A. R., & Ralph, R. K. (1968). [104] Recovery and purification of nucleic acids by means of cetyltrimethylammonium bromide. Nucleic Acids, Part B, 156-160. doi:10.1016/0076-6879(67)12125-3

Codoñer, F. M., Darós, J.-A., Solé, R. V., & Elena, S. F. (2006). The Fittest versus the Flattest: Experimental Confirmation of the Quasispecies Effect with Subviral Pathogens. PLoS Pathogens, 2(12), e136. doi:10.1371/journal.ppat.0020136

Hashimoto, J., & Koganezawa, H. (1987). Nucleotide sequence and secondary structure of apple scar skin viroid. Nucleic Acids Research, 15(17), 7045-7052. doi:10.1093/nar/15.17.7045

Zhu, S. F., Hadidi, A., & Hammond, R. W. (1998). AGROINFECTION OF PEAR AND APPLE WITH DAPPLE APPLE VIROID RESULTS IN SYSTEMIC INFECTION. Acta Horticulturae, (472), 613-616. doi:10.17660/actahortic.1998.472.81

OSAKI, H., KUDO, A., & OHTSU, Y. (1996). Japanese Pear Fruit Dimple Disease Caused by Apple Scar Skin Viroid (ASSVd). Japanese Journal of Phytopathology, 62(4), 379-385. doi:10.3186/jjphytopath.62.379

Ito, T., & Yoshida, K. (1998). REPRODUCTION OF APPLE FRUIT CRINKLE DISEASE SYMPTOMS BY APPLE FRUIT CRINKLE VIROID. Acta Horticulturae, (472), 587-594. doi:10.17660/actahortic.1998.472.78

Hadidi, A., & Yang, X. (1990). Detection of pome fruit viroids by enzymatic cDNA amplification. Journal of Virological Methods, 30(3), 261-269. doi:10.1016/0166-0934(90)90068-q

Kyriakopoulou, P. E., & Hadidi, A. (1998). NATURAL INFECTION OF WILD AND CULTIVATED PEARS WITH APPLE SCAR SKIN VIROID IN GREECE. Acta Horticulturae, (472), 617-626. doi:10.17660/actahortic.1998.472.82

Ambros, S., Desvignes, J. C., Llacer, G., & Flores, R. (1995). Pear blister canker viroid: sequence variability and causal role in pear blister canker disease. Journal of General Virology, 76(10), 2625-2629. doi:10.1099/0022-1317-76-10-2625

Sano, T., Hataya, T., Terai, Y., & Shikata, E. (1989). Hop Stunt Viroid Strains from Dapple Fruit Disease of Plum and Peach in Japan. Journal of General Virology, 70(6), 1311-1319. doi:10.1099/0022-1317-70-6-1311

Flores, R., Hernández, C., Desvignes, J. C., & Llácer, G. (1990). Some properties of the viroid inducing peach latent mosaic disease. Research in Virology, 141(1), 109-118. doi:10.1016/0923-2516(90)90060-v

Malfitano, M., Di Serio, F., Covelli, L., Ragozzino, A., Hernández, C., & Flores, R. (2003). Peach latent mosaic viroid variants inducing peach calico (extreme chlorosis) contain a characteristic insertion that is responsible for this symptomatology. Virology, 313(2), 492-501. doi:10.1016/s0042-6822(03)00315-5

Puchta, H., Luckinger, R., Yang, X., Hadidi, A., & S�nger, H. L. (1990). Nucleotide sequence and secondary structure of apple scar skin viroid (ASSVd) from China. Plant Molecular Biology, 14(6), 1065-1067. doi:10.1007/bf00019406

KOGANEZAWA, H. (1985). Transmission to apple seedlings of a low molecular weight RNA extracted from apple scar skin diseased trees. Japanese Journal of Phytopathology, 51(2), 176-182. doi:10.3186/jjphytopath.51.176

Koganezawa, H. (1986). FURTHER EVIDENCE FOR VIROID ETIOLOGY OF APPLE SCAR SKIN AND DAPPLE APPLE DISEASES. Acta Horticulturae, (193), 29-34. doi:10.17660/actahortic.1986.193.2

Yamaguch, A., & Yanase, H. (1976). POSSIBLE RELATIONSHIP BETWEEN THE CAUSAL AGENT OF DAPPLE APPLE AND SCAR SKIN. Acta Horticulturae, (67), 249-254. doi:10.17660/actahortic.1976.67.31

Desvignes, J. C., Grasseau, N., Boyé, R., Cornaggia, D., Aparicio, F., Di Serio, F., & Flores, R. (1999). Biological Properties of Apple Scar Skin Viroid: Isolates, Host Range, Different Sensitivity of Apple Cultivars, Elimination, and Natural Transmission. Plant Disease, 83(8), 768-772. doi:10.1094/pdis.1999.83.8.768

Walia, Y., Dhir, S., Bhadoria, S., Hallan, V., & Zaidi, A. A. (2011). Molecular characterization of Apple scar skin viroid from Himalayan wild cherry. Forest Pathology, 42(1), 84-87. doi:10.1111/j.1439-0329.2011.00723.x

Di Serio, F., Aparicio, F., Alioto, D., Ragozzino, A., & Flores, R. (1996). Identification and molecular properties of a 306 nucleotide viroid associated with apple dimple fruit disease. Journal of General Virology, 77(11), 2833-2837. doi:10.1099/0022-1317-77-11-2833

Di Serio, F., Giunchedi, L., Alioto, D., Ragozzino, A., & Flores, R. (1998). IDENTIFICATION OF APPLE DIMPLE FRUIT VIROID IN DIFFERENT COMMERCIAL VARIETIES OF APPLE GROWN IN ITALY. Acta Horticulturae, (472), 595-602. doi:10.17660/actahortic.1998.472.79

Roumi, V., Gazel, M., & Caglayan, K. (2017). First report of Apple dimple fruit viroid in apple trees in Iran. New Disease Reports, 35, 3. doi:10.5197/j.2044-0588.2017.035.003

He, Y.-H., Isono, S., Kawaguchi-Ito, Y., Taneda, A., Kondo, K., Iijima, A., … Sano, T. (2010). Characterization of a new Apple dimple fruit viroid variant that causes yellow dimple fruit formation in ‘Fuji’ apple trees. Journal of General Plant Pathology, 76(5), 324-330. doi:10.1007/s10327-010-0258-x

Chiumenti, M., Torchetti, E. M., Di Serio, F., & Minafra, A. (2014). Identification and characterization of a viroid resembling apple dimple fruit viroid in fig (Ficus carica L.) by next generation sequencing of small RNAs. Virus Research, 188, 54-59. doi:10.1016/j.virusres.2014.03.026

ITO, T., KANEMATSU, S., KOGANEZAWA, H., TSUCHIZAKI, T., & YOSHIDA, K. (1993). Detection of a Viroid Associated with Apple Fruit Crinkle Disease. Japanese Journal of Phytopathology, 59(5), 520-527. doi:10.3186/jjphytopath.59.520

Sano, T., Yoshida, H., Goshono, M., Monma, T., Kawasaki, H., & Ishizaki, K. (2004). Characterization of a new viroid strain from hops: evidence for viroid speciation by isolation in different host species. Journal of General Plant Pathology, 70(3), 181-187. doi:10.1007/s10327-004-0105-z

Nakaune, R., & Nakano, M. (2008). Identification of a new Apscaviroid from Japanese persimmon. Archives of Virology, 153(5), 969-972. doi:10.1007/s00705-008-0073-2

Hernandez, C., Elena, S. F., Moya, A., & Flores, R. (1992). Pear Blister Canker Viroid is a Member of the Apple Scar Skin Subgroup (apscaviroids) and also has Sequence Homology with Viroids from other Subgroups. Journal of General Virology, 73(10), 2503-2507. doi:10.1099/0022-1317-73-10-2503

Lemoine, J. (1986). PROBLEMS REGARDING THE DETECTION OF GRAFT TRANSMITTED PEAR CANKER. Acta Horticulturae, (193), 251-260. doi:10.17660/actahortic.1986.193.43

Ambrós, S., Llácer, G., Desvignes, J. C., & Flores, R. (1995). PEACH LATENT MOSAIC AND PEAR BLISTER CANKER VIROIDS: DETECTION BY MOLECULAR HYBRIDIZATION AND RELATIONSHIPS WITH SPECIFIC MALADIES AFFECTING PEACH AND PEAR TREES. Acta Horticulturae, (386), 515-521. doi:10.17660/actahortic.1995.386.74

Flores, R., Hernandez, C., Llacer, G., & Desvignes, J. C. (1991). Identification of a new viroid as the putative causal agent of pear blister canker disease. Journal of General Virology, 72(6), 1199-1204. doi:10.1099/0022-1317-72-6-1199

Desvignes, J. C., Cornaggia, D., Grasseau, N., Ambrós, S., & Flores, R. (1999). Pear Blister Canker Viroid: Host Range and Improved Bioassay with Two New Pear Indicators, Fieud 37 and Fieud 110. Plant Disease, 83(5), 419-422. doi:10.1094/pdis.1999.83.5.419

SASAKI, M., & SHIKATA, E. (1977). On Some Properties of Hop Stunt Disease Agent, a Viroid. Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences, 53(3), 109-112. doi:10.2183/pjab.53.109

Ohno, T., Takamatsu, N., Meshi, T., & Okada, Y. (1983). Hop stunt viroid: molecular cloning and nucleotide sequence of the complete cDNA copy. Nucleic Acids Research, 11(18), 6185-6197. doi:10.1093/nar/11.18.6185

Kofalvi, S. A., Pallás, V., Marcos, J. F., Candresse, T., & Cañizares, M. C. (1997). Hop stunt viroid (HSVd) sequence variants from Prunus species: evidence for recombination between HSVd isolates. Journal of General Virology, 78(12), 3177-3186. doi:10.1099/0022-1317-78-12-3177

Amari, K., Gomez, G., Myrta, A., Di Terlizzi, B., & Pallás, V. (2001). The molecular characterization of 16 new sequence variants of Hop stunt viroid reveals the existence of invariable regions and a conserved hammerhead-like structure on the viroid molecule The sequences described in this work have been deposited in the EMBL database and received accession numbers AJ297825 to AJ297840. Journal of General Virology, 82(4), 953-962. doi:10.1099/0022-1317-82-4-953

SANO, T., HATAYA, T., TERAI, Y., & SHIKATA, E. (1986). Association of a viroid-like RNA from plum dapple disease occurring in Japan. Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences, 62(3), 98-101. doi:10.2183/pjab.62.98

Hernandez, C., & Flores, R. (1992). Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proceedings of the National Academy of Sciences, 89(9), 3711-3715. doi:10.1073/pnas.89.9.3711

Ambros, S. (1998). In vitro and in vivo self-cleavage of a viroid RNA with a mutation in the hammerhead catalytic pocket. Nucleic Acids Research, 26(8), 1877-1883. doi:10.1093/nar/26.8.1877

Ambrós, S., Hernández, C., & Flores, R. (1999). Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host The data reported in this paper are in the EMBL nucleotide sequence database and assigned the accession nos AJ241818–AJ241850. Journal of General Virology, 80(8), 2239-2252. doi:10.1099/0022-1317-80-8-2239

Fekih Hassen, I., Massart, S., Motard, J., Roussel, S., Parisi, O., Kummert, J., … Jijakli, M. H. (2007). Molecular features of new Peach Latent Mosaic Viroid variants suggest that recombination may have contributed to the evolution of this infectious RNA. Virology, 360(1), 50-57. doi:10.1016/j.virol.2006.10.021

DUBÉ, A., BOLDUC, F., BISAILLON, M., & PERREAULT, J.-P. (2011). Mapping studies of the Peach latent mosaic viroid reveal novel structural features. Molecular Plant Pathology, 12(7), 688-701. doi:10.1111/j.1364-3703.2010.00703.x

Bussière, F., Ouellet, J., Côté, F., Lévesque, D., & Perreault, J. P. (2000). Mapping in Solution Shows the Peach Latent Mosaic Viroid To Possess a New Pseudoknot in a Complex, Branched Secondary Structure. Journal of Virology, 74(6), 2647-2654. doi:10.1128/jvi.74.6.2647-2654.2000

FLORES, R., DELGADO, S., RODIO, M.-E., AMBRÓS, S., HERNÁNDEZ, C., & SERIO, F. D. (2006). Peach latent mosaic viroid: not so latent. Molecular Plant Pathology, 7(4), 209-221. doi:10.1111/j.1364-3703.2006.00332.x

Desvignes, J. C. (1976). THE VIRUS DISEASES DETECTED IN GREENHOUSE AND IN FIELD BY THE PEACH SEEDLING GF 305 INDICATOR. Acta Horticulturae, (67), 315-323. doi:10.17660/actahortic.1976.67.41

DESVIGNES, J. C. (1986). PEACH LATENT MOSAIC AND ITS RELATION TO PEACH MOSAIC AND PEACH YELLOW MOSAIC VIRUS DISEASES. Acta Horticulturae, (193), 51-58. doi:10.17660/actahortic.1986.193.6

Flores, R., & Llácer, G. (1989). ISOLATION OF A VIROID-LIKE RNA ASSOCIATED WITH PEACH LATENT MOSAIC DISEASE. Acta Horticulturae, (235), 325-332. doi:10.17660/actahortic.1989.235.47

Rodio, M.-E., Delgado, S., Flores, R., & Serio, F. D. (2006). Variants of Peach latent mosaic viroid inducing peach calico: uneven distribution in infected plants and requirements of the insertion containing the pathogenicity determinant. Journal of General Virology, 87(1), 231-240. doi:10.1099/vir.0.81356-0

Rodio, M.-E., Delgado, S., De Stradis, A., Gómez, M.-D., Flores, R., & Di Serio, F. (2007). A Viroid RNA with a Specific Structural Motif Inhibits Chloroplast Development. The Plant Cell, 19(11), 3610-3626. doi:10.1105/tpc.106.049775

Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.x

Wang, L., He, Y., Kang, Y., Hong, N., Farooq, A. B. U., Wang, G., & Xu, W. (2013). Virulence determination and molecular features of peach latent mosaic viroid isolates derived from phenotypically different peach leaves: A nucleotide polymorphism in L11 contributes to symptom alteration. Virus Research, 177(2), 171-178. doi:10.1016/j.virusres.2013.08.005

Zhang, Z., Qi, S., Tang, N., Zhang, X., Chen, S., Zhu, P., … Wu, Q. (2014). Discovery of Replicating Circular RNAs by RNA-Seq and Computational Algorithms. PLoS Pathogens, 10(12), e1004553. doi:10.1371/journal.ppat.1004553

Serra, P., Messmer, A., Sanderson, D., James, D., & Flores, R. (2018). Apple hammerhead viroid-like RNA is a bona fide viroid: Autonomous replication and structural features support its inclusion as a new member in the genus Pelamoviroid. Virus Research, 249, 8-15. doi:10.1016/j.virusres.2018.03.001

Messmer, A., Sanderson, D., Braun, G., Serra, P., Flores, R., & James, D. (2017). Molecular and phylogenetic identification of unique isolates of hammerhead viroid-like RNA from ‘Pacific Gala’ apple (Malus domestica) in Canada. Canadian Journal of Plant Pathology, 39(3), 342-353. doi:10.1080/07060661.2017.1354334

Wu, Q., Wang, Y., Cao, M., Pantaleo, V., Burgyan, J., Li, W.-X., & Ding, S.-W. (2012). Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. Proceedings of the National Academy of Sciences, 109(10), 3938-3943. doi:10.1073/pnas.1117815109

Hadidi, A., Flores, R., Candresse, T., & Barba, M. (2016). Next-Generation Sequencing and Genome Editing in Plant Virology. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.01325

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem