Diener, T. O. (1971). Potato spindle tuber «virus». Virology, 45(2), 411-428. doi:10.1016/0042-6822(71)90342-4
Flores, R., Minoia, S., Carbonell, A., Gisel, A., Delgado, S., López-Carrasco, A., … Di Serio, F. (2015). Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Research, 209, 136-145. doi:10.1016/j.virusres.2015.02.027
López-Carrasco, A., & Flores, R. (2016). Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A «naked» rod-like conformation similar but not identical to that observed in vitro. RNA Biology, 14(8), 1046-1054. doi:10.1080/15476286.2016.1223005
[+]
Diener, T. O. (1971). Potato spindle tuber «virus». Virology, 45(2), 411-428. doi:10.1016/0042-6822(71)90342-4
Flores, R., Minoia, S., Carbonell, A., Gisel, A., Delgado, S., López-Carrasco, A., … Di Serio, F. (2015). Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Research, 209, 136-145. doi:10.1016/j.virusres.2015.02.027
López-Carrasco, A., & Flores, R. (2016). Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A «naked» rod-like conformation similar but not identical to that observed in vitro. RNA Biology, 14(8), 1046-1054. doi:10.1080/15476286.2016.1223005
López-Carrasco, A., & Flores, R. (2017). The predominant circular form of avocado sunblotch viroid accumulates in planta as a free RNA adopting a rod-shaped secondary structure unprotected by tightly bound host proteins. Journal of General Virology, 98(7), 1913-1922. doi:10.1099/jgv.0.000846
Flores, R., Hernández, C., Alba, A. E. M. de, Daròs, J.-A., & Serio, F. D. (2005). Viroids and Viroid-Host Interactions. Annual Review of Phytopathology, 43(1), 117-139. doi:10.1146/annurev.phyto.43.040204.140243
Di Serio, F., Flores, R., Verhoeven, J. T. J., Li, S.-F., Pallás, V., Randles, J. W., … Owens, R. A. (2014). Current status of viroid taxonomy. Archives of Virology, 159(12), 3467-3478. doi:10.1007/s00705-014-2200-6
Di Serio, F., Li, S.-F., Matoušek, J., Owens, R. A., Pallás, V., … Randles, J. W. (2018). ICTV Virus Taxonomy Profile: Avsunviroidae. Journal of General Virology, 99(5), 611-612. doi:10.1099/jgv.0.001045
Diener, T. O., Smith, D. R., & O’Brien, M. J. (1972). Potato spindle tuber viroid. Virology, 48(3), 844-846. doi:10.1016/0042-6822(72)90166-3
Diener, T. O. (1972). Potato spindle tuber viroid. Virology, 50(2), 606-609. doi:10.1016/0042-6822(72)90412-6
Semancik, J. S. (1970). Properties of the Infectious Forms of Exocortis Virus of Citrus. Phytopathology, 60(4), 732. doi:10.1094/phyto-60-732
Semancik, J. S., Morris, T. J., & Weathers, L. G. (1973). Structure and conformation of low molecular weight pathogenic RNA from exocortis disease. Virology, 53(2), 448-456. doi:10.1016/0042-6822(73)90224-9
Bos, L. (1981). Hundred years of Koch’s Postulates and the history of etiology in plant virus research. Netherlands Journal of Plant Pathology, 87(3), 91-110. doi:10.1007/bf01976645
Schumacher, J., Randles, J. W., & Riesner, D. (1983). A two-dimensional electrophoretic technique for the detection of circular viroids and virusoids. Analytical Biochemistry, 135(2), 288-295. doi:10.1016/0003-2697(83)90685-1
Flores, R., Duran-Vila, N., Pallas, V., & Semancik, J. S. (1985). Detection of Viroid and Viroid-like RNAs from Grapevine. Journal of General Virology, 66(10), 2095-2102. doi:10.1099/0022-1317-66-10-2095
Serio, F. D., Malfitano, M., Alioto, D., Ragozzino, A., Desvignes, J. C., & Flores, R. (2001). Apple dimple fruit viroid: Fulfillment of Koch’s Postulates and Symptom Characteristics. Plant Disease, 85(2), 179-182. doi:10.1094/pdis.2001.85.2.179
Pallas, V., Navarro, A., & Flores, R. (1987). Isolation of a Viroid-like RNA from Hop Different from Hop Stunt Viroid. Journal of General Virology, 68(12), 3201-3205. doi:10.1099/0022-1317-68-12-3201
Navarro, B., & Flores, R. (1997). Chrysanthemum chlorotic mottle viroid: Unusual structural properties of a subgroup of self-cleaving viroids with hammerhead ribozymes. Proceedings of the National Academy of Sciences, 94(21), 11262-11267. doi:10.1073/pnas.94.21.11262
De la Pena, M., Navarro, B., & Flores, R. (1999). Mapping the molecular determinant of pathogenicity in a hammerhead viroid: A tetraloop within the in vivo branched RNA conformation. Proceedings of the National Academy of Sciences, 96(17), 9960-9965. doi:10.1073/pnas.96.17.9960
Bellamy, A. R., & Ralph, R. K. (1968). [104] Recovery and purification of nucleic acids by means of cetyltrimethylammonium bromide. Nucleic Acids, Part B, 156-160. doi:10.1016/0076-6879(67)12125-3
Codoñer, F. M., Darós, J.-A., Solé, R. V., & Elena, S. F. (2006). The Fittest versus the Flattest: Experimental Confirmation of the Quasispecies Effect with Subviral Pathogens. PLoS Pathogens, 2(12), e136. doi:10.1371/journal.ppat.0020136
Hashimoto, J., & Koganezawa, H. (1987). Nucleotide sequence and secondary structure of apple scar skin viroid. Nucleic Acids Research, 15(17), 7045-7052. doi:10.1093/nar/15.17.7045
Zhu, S. F., Hadidi, A., & Hammond, R. W. (1998). AGROINFECTION OF PEAR AND APPLE WITH DAPPLE APPLE VIROID RESULTS IN SYSTEMIC INFECTION. Acta Horticulturae, (472), 613-616. doi:10.17660/actahortic.1998.472.81
OSAKI, H., KUDO, A., & OHTSU, Y. (1996). Japanese Pear Fruit Dimple Disease Caused by Apple Scar Skin Viroid (ASSVd). Japanese Journal of Phytopathology, 62(4), 379-385. doi:10.3186/jjphytopath.62.379
Ito, T., & Yoshida, K. (1998). REPRODUCTION OF APPLE FRUIT CRINKLE DISEASE SYMPTOMS BY APPLE FRUIT CRINKLE VIROID. Acta Horticulturae, (472), 587-594. doi:10.17660/actahortic.1998.472.78
Hadidi, A., & Yang, X. (1990). Detection of pome fruit viroids by enzymatic cDNA amplification. Journal of Virological Methods, 30(3), 261-269. doi:10.1016/0166-0934(90)90068-q
Kyriakopoulou, P. E., & Hadidi, A. (1998). NATURAL INFECTION OF WILD AND CULTIVATED PEARS WITH APPLE SCAR SKIN VIROID IN GREECE. Acta Horticulturae, (472), 617-626. doi:10.17660/actahortic.1998.472.82
Ambros, S., Desvignes, J. C., Llacer, G., & Flores, R. (1995). Pear blister canker viroid: sequence variability and causal role in pear blister canker disease. Journal of General Virology, 76(10), 2625-2629. doi:10.1099/0022-1317-76-10-2625
Sano, T., Hataya, T., Terai, Y., & Shikata, E. (1989). Hop Stunt Viroid Strains from Dapple Fruit Disease of Plum and Peach in Japan. Journal of General Virology, 70(6), 1311-1319. doi:10.1099/0022-1317-70-6-1311
Flores, R., Hernández, C., Desvignes, J. C., & Llácer, G. (1990). Some properties of the viroid inducing peach latent mosaic disease. Research in Virology, 141(1), 109-118. doi:10.1016/0923-2516(90)90060-v
Malfitano, M., Di Serio, F., Covelli, L., Ragozzino, A., Hernández, C., & Flores, R. (2003). Peach latent mosaic viroid variants inducing peach calico (extreme chlorosis) contain a characteristic insertion that is responsible for this symptomatology. Virology, 313(2), 492-501. doi:10.1016/s0042-6822(03)00315-5
Puchta, H., Luckinger, R., Yang, X., Hadidi, A., & S�nger, H. L. (1990). Nucleotide sequence and secondary structure of apple scar skin viroid (ASSVd) from China. Plant Molecular Biology, 14(6), 1065-1067. doi:10.1007/bf00019406
KOGANEZAWA, H. (1985). Transmission to apple seedlings of a low molecular weight RNA extracted from apple scar skin diseased trees. Japanese Journal of Phytopathology, 51(2), 176-182. doi:10.3186/jjphytopath.51.176
Koganezawa, H. (1986). FURTHER EVIDENCE FOR VIROID ETIOLOGY OF APPLE SCAR SKIN AND DAPPLE APPLE DISEASES. Acta Horticulturae, (193), 29-34. doi:10.17660/actahortic.1986.193.2
Yamaguch, A., & Yanase, H. (1976). POSSIBLE RELATIONSHIP BETWEEN THE CAUSAL AGENT OF DAPPLE APPLE AND SCAR SKIN. Acta Horticulturae, (67), 249-254. doi:10.17660/actahortic.1976.67.31
Desvignes, J. C., Grasseau, N., Boyé, R., Cornaggia, D., Aparicio, F., Di Serio, F., & Flores, R. (1999). Biological Properties of Apple Scar Skin Viroid: Isolates, Host Range, Different Sensitivity of Apple Cultivars, Elimination, and Natural Transmission. Plant Disease, 83(8), 768-772. doi:10.1094/pdis.1999.83.8.768
Walia, Y., Dhir, S., Bhadoria, S., Hallan, V., & Zaidi, A. A. (2011). Molecular characterization of Apple scar skin viroid from Himalayan wild cherry. Forest Pathology, 42(1), 84-87. doi:10.1111/j.1439-0329.2011.00723.x
Di Serio, F., Aparicio, F., Alioto, D., Ragozzino, A., & Flores, R. (1996). Identification and molecular properties of a 306 nucleotide viroid associated with apple dimple fruit disease. Journal of General Virology, 77(11), 2833-2837. doi:10.1099/0022-1317-77-11-2833
Di Serio, F., Giunchedi, L., Alioto, D., Ragozzino, A., & Flores, R. (1998). IDENTIFICATION OF APPLE DIMPLE FRUIT VIROID IN DIFFERENT COMMERCIAL VARIETIES OF APPLE GROWN IN ITALY. Acta Horticulturae, (472), 595-602. doi:10.17660/actahortic.1998.472.79
Roumi, V., Gazel, M., & Caglayan, K. (2017). First report of Apple dimple fruit viroid in apple trees in Iran. New Disease Reports, 35, 3. doi:10.5197/j.2044-0588.2017.035.003
He, Y.-H., Isono, S., Kawaguchi-Ito, Y., Taneda, A., Kondo, K., Iijima, A., … Sano, T. (2010). Characterization of a new Apple dimple fruit viroid variant that causes yellow dimple fruit formation in ‘Fuji’ apple trees. Journal of General Plant Pathology, 76(5), 324-330. doi:10.1007/s10327-010-0258-x
Chiumenti, M., Torchetti, E. M., Di Serio, F., & Minafra, A. (2014). Identification and characterization of a viroid resembling apple dimple fruit viroid in fig (Ficus carica L.) by next generation sequencing of small RNAs. Virus Research, 188, 54-59. doi:10.1016/j.virusres.2014.03.026
ITO, T., KANEMATSU, S., KOGANEZAWA, H., TSUCHIZAKI, T., & YOSHIDA, K. (1993). Detection of a Viroid Associated with Apple Fruit Crinkle Disease. Japanese Journal of Phytopathology, 59(5), 520-527. doi:10.3186/jjphytopath.59.520
Sano, T., Yoshida, H., Goshono, M., Monma, T., Kawasaki, H., & Ishizaki, K. (2004). Characterization of a new viroid strain from hops: evidence for viroid speciation by isolation in different host species. Journal of General Plant Pathology, 70(3), 181-187. doi:10.1007/s10327-004-0105-z
Nakaune, R., & Nakano, M. (2008). Identification of a new Apscaviroid from Japanese persimmon. Archives of Virology, 153(5), 969-972. doi:10.1007/s00705-008-0073-2
Hernandez, C., Elena, S. F., Moya, A., & Flores, R. (1992). Pear Blister Canker Viroid is a Member of the Apple Scar Skin Subgroup (apscaviroids) and also has Sequence Homology with Viroids from other Subgroups. Journal of General Virology, 73(10), 2503-2507. doi:10.1099/0022-1317-73-10-2503
Lemoine, J. (1986). PROBLEMS REGARDING THE DETECTION OF GRAFT TRANSMITTED PEAR CANKER. Acta Horticulturae, (193), 251-260. doi:10.17660/actahortic.1986.193.43
Ambrós, S., Llácer, G., Desvignes, J. C., & Flores, R. (1995). PEACH LATENT MOSAIC AND PEAR BLISTER CANKER VIROIDS: DETECTION BY MOLECULAR HYBRIDIZATION AND RELATIONSHIPS WITH SPECIFIC MALADIES AFFECTING PEACH AND PEAR TREES. Acta Horticulturae, (386), 515-521. doi:10.17660/actahortic.1995.386.74
Flores, R., Hernandez, C., Llacer, G., & Desvignes, J. C. (1991). Identification of a new viroid as the putative causal agent of pear blister canker disease. Journal of General Virology, 72(6), 1199-1204. doi:10.1099/0022-1317-72-6-1199
Desvignes, J. C., Cornaggia, D., Grasseau, N., Ambrós, S., & Flores, R. (1999). Pear Blister Canker Viroid: Host Range and Improved Bioassay with Two New Pear Indicators, Fieud 37 and Fieud 110. Plant Disease, 83(5), 419-422. doi:10.1094/pdis.1999.83.5.419
SASAKI, M., & SHIKATA, E. (1977). On Some Properties of Hop Stunt Disease Agent, a Viroid. Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences, 53(3), 109-112. doi:10.2183/pjab.53.109
Ohno, T., Takamatsu, N., Meshi, T., & Okada, Y. (1983). Hop stunt viroid: molecular cloning and nucleotide sequence of the complete cDNA copy. Nucleic Acids Research, 11(18), 6185-6197. doi:10.1093/nar/11.18.6185
Kofalvi, S. A., Pallás, V., Marcos, J. F., Candresse, T., & Cañizares, M. C. (1997). Hop stunt viroid (HSVd) sequence variants from Prunus species: evidence for recombination between HSVd isolates. Journal of General Virology, 78(12), 3177-3186. doi:10.1099/0022-1317-78-12-3177
Amari, K., Gomez, G., Myrta, A., Di Terlizzi, B., & Pallás, V. (2001). The molecular characterization of 16 new sequence variants of Hop stunt viroid reveals the existence of invariable regions and a conserved hammerhead-like structure on the viroid molecule
The sequences described in this work have been deposited in the EMBL database and received accession numbers AJ297825 to AJ297840. Journal of General Virology, 82(4), 953-962. doi:10.1099/0022-1317-82-4-953
SANO, T., HATAYA, T., TERAI, Y., & SHIKATA, E. (1986). Association of a viroid-like RNA from plum dapple disease occurring in Japan. Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences, 62(3), 98-101. doi:10.2183/pjab.62.98
Hernandez, C., & Flores, R. (1992). Plus and minus RNAs of peach latent mosaic viroid self-cleave in vitro via hammerhead structures. Proceedings of the National Academy of Sciences, 89(9), 3711-3715. doi:10.1073/pnas.89.9.3711
Ambros, S. (1998). In vitro and in vivo self-cleavage of a viroid RNA with a mutation in the hammerhead catalytic pocket. Nucleic Acids Research, 26(8), 1877-1883. doi:10.1093/nar/26.8.1877
Ambrós, S., Hernández, C., & Flores, R. (1999). Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host
The data reported in this paper are in the EMBL nucleotide sequence database and assigned the accession nos AJ241818–AJ241850. Journal of General Virology, 80(8), 2239-2252. doi:10.1099/0022-1317-80-8-2239
Fekih Hassen, I., Massart, S., Motard, J., Roussel, S., Parisi, O., Kummert, J., … Jijakli, M. H. (2007). Molecular features of new Peach Latent Mosaic Viroid variants suggest that recombination may have contributed to the evolution of this infectious RNA. Virology, 360(1), 50-57. doi:10.1016/j.virol.2006.10.021
DUBÉ, A., BOLDUC, F., BISAILLON, M., & PERREAULT, J.-P. (2011). Mapping studies of the Peach latent mosaic viroid reveal novel structural features. Molecular Plant Pathology, 12(7), 688-701. doi:10.1111/j.1364-3703.2010.00703.x
Bussière, F., Ouellet, J., Côté, F., Lévesque, D., & Perreault, J. P. (2000). Mapping in Solution Shows the Peach Latent Mosaic Viroid To Possess a New Pseudoknot in a Complex, Branched Secondary Structure. Journal of Virology, 74(6), 2647-2654. doi:10.1128/jvi.74.6.2647-2654.2000
FLORES, R., DELGADO, S., RODIO, M.-E., AMBRÓS, S., HERNÁNDEZ, C., & SERIO, F. D. (2006). Peach latent mosaic viroid: not so latent. Molecular Plant Pathology, 7(4), 209-221. doi:10.1111/j.1364-3703.2006.00332.x
Desvignes, J. C. (1976). THE VIRUS DISEASES DETECTED IN GREENHOUSE AND IN FIELD BY THE PEACH SEEDLING GF 305 INDICATOR. Acta Horticulturae, (67), 315-323. doi:10.17660/actahortic.1976.67.41
DESVIGNES, J. C. (1986). PEACH LATENT MOSAIC AND ITS RELATION TO PEACH MOSAIC AND PEACH YELLOW MOSAIC VIRUS DISEASES. Acta Horticulturae, (193), 51-58. doi:10.17660/actahortic.1986.193.6
Flores, R., & Llácer, G. (1989). ISOLATION OF A VIROID-LIKE RNA ASSOCIATED WITH PEACH LATENT MOSAIC DISEASE. Acta Horticulturae, (235), 325-332. doi:10.17660/actahortic.1989.235.47
Rodio, M.-E., Delgado, S., Flores, R., & Serio, F. D. (2006). Variants of Peach latent mosaic viroid inducing peach calico: uneven distribution in infected plants and requirements of the insertion containing the pathogenicity determinant. Journal of General Virology, 87(1), 231-240. doi:10.1099/vir.0.81356-0
Rodio, M.-E., Delgado, S., De Stradis, A., Gómez, M.-D., Flores, R., & Di Serio, F. (2007). A Viroid RNA with a Specific Structural Motif Inhibits Chloroplast Development. The Plant Cell, 19(11), 3610-3626. doi:10.1105/tpc.106.049775
Navarro, B., Gisel, A., Rodio, M. E., Delgado, S., Flores, R., & Di Serio, F. (2012). Small RNAs containing the pathogenic determinant of a chloroplast-replicating viroid guide the degradation of a host mRNA as predicted by RNA silencing. The Plant Journal, 70(6), 991-1003. doi:10.1111/j.1365-313x.2012.04940.x
Wang, L., He, Y., Kang, Y., Hong, N., Farooq, A. B. U., Wang, G., & Xu, W. (2013). Virulence determination and molecular features of peach latent mosaic viroid isolates derived from phenotypically different peach leaves: A nucleotide polymorphism in L11 contributes to symptom alteration. Virus Research, 177(2), 171-178. doi:10.1016/j.virusres.2013.08.005
Zhang, Z., Qi, S., Tang, N., Zhang, X., Chen, S., Zhu, P., … Wu, Q. (2014). Discovery of Replicating Circular RNAs by RNA-Seq and Computational Algorithms. PLoS Pathogens, 10(12), e1004553. doi:10.1371/journal.ppat.1004553
Serra, P., Messmer, A., Sanderson, D., James, D., & Flores, R. (2018). Apple hammerhead viroid-like RNA is a bona fide viroid: Autonomous replication and structural features support its inclusion as a new member in the genus Pelamoviroid. Virus Research, 249, 8-15. doi:10.1016/j.virusres.2018.03.001
Messmer, A., Sanderson, D., Braun, G., Serra, P., Flores, R., & James, D. (2017). Molecular and phylogenetic identification of unique isolates of hammerhead viroid-like RNA from ‘Pacific Gala’ apple (Malus domestica) in Canada. Canadian Journal of Plant Pathology, 39(3), 342-353. doi:10.1080/07060661.2017.1354334
Wu, Q., Wang, Y., Cao, M., Pantaleo, V., Burgyan, J., Li, W.-X., & Ding, S.-W. (2012). Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm. Proceedings of the National Academy of Sciences, 109(10), 3938-3943. doi:10.1073/pnas.1117815109
Hadidi, A., Flores, R., Candresse, T., & Barba, M. (2016). Next-Generation Sequencing and Genome Editing in Plant Virology. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.01325
[-]