- -

Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii

Show full item record

Ahrazem, O.; Diretto, G.; Argandoña, J.; Rubio-Moraga, A.; Julve, J.; Orzáez Calatayud, DV.; Granell Richart, A.... (2017). Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii. Journal of Experimental Botany. 68(16):4663-4677. https://doi.org/10.1093/jxb/erx277

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148362

Files in this item

Item Metadata

Title: Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii
Author: Ahrazem, Oussama Diretto, G. Argandoña, J. Rubio-Moraga, Angela Julve, J.M. Orzáez Calatayud, Diego Vicente GRANELL RICHART, ANTONIO Gómez-Gómez, Lourdes
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Crocetin, one of the few colored apocarotenoids known in nature, is present in flowers and fruits and has long been used medicinally and as a colorant. Saffron is the main source of crocetin, although a few other ...[+]
Subjects: Carotenoid dioxygenase cleavage , Crocetin , Flowers , Lamiales , Zeaxanthin
Copyrigths: Cerrado
Source:
Journal of Experimental Botany. (issn: 0022-0957 )
DOI: 10.1093/jxb/erx277
Publisher:
Oxford University Press
Publisher version: https://doi.org/10.1093/jxb/erx277
Project ID:
info:eu-repo/grantAgreement/MINECO//BIO2013-44239-R/ES/ELUCIDACION DE LA BIOSINTESIS, MODIFICACION, ACUMULACION Y REGULACION DE APOCAROTENOIDES EN AZAFRAN Y ESPECIES AFINES MEDIANTE APROXIMACIONES OMICAS/
info:eu-repo/grantAgreement/COST//CA15136/EU/European network to advance carotenoid research and applications in agro-food and health (EUROCAROTEN)/
info:eu-repo/grantAgreement/MINECO//BIO2016-77000-R/ES/ELUCIDACION DEL MAPA DE LOS APOCAROTENOIDES DURANTE EL DESARROLLO DEL AZAFRAN: DESDE PIGMENTOS A REGULADORES/
info:eu-repo/grantAgreement/MINECO//BIO2015-71703-REDT/ES/CAROTENOIDES EN RED: DE LOS MICROORGANISMOS Y LAS PLANTAS A LOS ALIMENTOS Y LA SALUD/
Thanks:
This work was supported by grants from the Spanish Ministerio de Economía y Competitividad (BIO2013-44239-R) and (BIO2016-77000-R). The laboratory participates in the CARNET network (BIO2015-71703-REDT) and EU-Cost action CA15136.[+]
Type: Artículo

References

Ahrazem, O., Rubio-Moraga, A., Argandoña-Picazo, J., Castillo, R., & Gómez-Gómez, L. (2016). Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron. Plant Molecular Biology, 91(3), 355-374. doi:10.1007/s11103-016-0473-8

Ahrazem, O., Rubio-Moraga, A., Berman, J., Capell, T., Christou, P., Zhu, C., & Gómez-Gómez, L. (2015). The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. New Phytologist, 209(2), 650-663. doi:10.1111/nph.13609

Ahrazem, O., Rubio-Moraga, A., Nebauer, S. G., Molina, R. V., & Gómez-Gómez, L. (2015). Saffron: Its Phytochemistry, Developmental Processes, and Biotechnological Prospects. Journal of Agricultural and Food Chemistry, 63(40), 8751-8764. doi:10.1021/acs.jafc.5b03194 [+]
Ahrazem, O., Rubio-Moraga, A., Argandoña-Picazo, J., Castillo, R., & Gómez-Gómez, L. (2016). Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron. Plant Molecular Biology, 91(3), 355-374. doi:10.1007/s11103-016-0473-8

Ahrazem, O., Rubio-Moraga, A., Berman, J., Capell, T., Christou, P., Zhu, C., & Gómez-Gómez, L. (2015). The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. New Phytologist, 209(2), 650-663. doi:10.1111/nph.13609

Ahrazem, O., Rubio-Moraga, A., Nebauer, S. G., Molina, R. V., & Gómez-Gómez, L. (2015). Saffron: Its Phytochemistry, Developmental Processes, and Biotechnological Prospects. Journal of Agricultural and Food Chemistry, 63(40), 8751-8764. doi:10.1021/acs.jafc.5b03194

Ahrazem, O., Trapero, A., Gómez, M. D., Rubio-Moraga, A., & Gómez-Gómez, L. (2010). Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: A deeper study in Crocus sativus and its allies. Genomics, 96(4), 239-250. doi:10.1016/j.ygeno.2010.07.003

Al-Babili, S., & Bouwmeester, H. J. (2015). Strigolactones, a Novel Carotenoid-Derived Plant Hormone. Annual Review of Plant Biology, 66(1), 161-186. doi:10.1146/annurev-arplant-043014-114759

Auldridge, M. E., McCarty, D. R., & Klee, H. J. (2006). Plant carotenoid cleavage oxygenases and their apocarotenoid products. Current Opinion in Plant Biology, 9(3), 315-321. doi:10.1016/j.pbi.2006.03.005

Avendaño-Vázquez, A.-O., Cordoba, E., Llamas, E., San Román, C., Nisar, N., De la Torre, S., … León, P. (2014). An Uncharacterized Apocarotenoid-Derived Signal Generated in ζ-Carotene Desaturase Mutants Regulates Leaf Development and the Expression of Chloroplast and Nuclear Genes in Arabidopsis. The Plant Cell, 26(6), 2524-2537. doi:10.1105/tpc.114.123349

Brandi, F., Bar, E., Mourgues, F., Horváth, G., Turcsi, E., Giuliano, G., … Rosati, C. (2011). Study of «Redhaven» peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biology, 11(1), 24. doi:10.1186/1471-2229-11-24

Bruno, M., Beyer, P., & Al-Babili, S. (2015). The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls. Archives of Biochemistry and Biophysics, 572, 126-133. doi:10.1016/j.abb.2015.02.011

Buah, S., Mlalazi, B., Khanna, H., Dale, J. L., & Mortimer, C. L. (2016). The Quest for Golden Bananas: Investigating Carotenoid Regulation in a Fe’i Group Musa Cultivar. Journal of Agricultural and Food Chemistry, 64(16), 3176-3185. doi:10.1021/acs.jafc.5b05740

Burmester, A., Richter, M., Schultze, K., Voelz, K., Schachtschabel, D., Boland, W., … Schimek, C. (2007). Cleavage of β-carotene as the first step in sexual hormone synthesis in zygomycetes is mediated by a trisporic acid regulated β-carotene oxygenase. Fungal Genetics and Biology, 44(11), 1096-1108. doi:10.1016/j.fgb.2007.07.008

Campbell, R., Ducreux, L. J. M., Morris, W. L., Morris, J. A., Suttle, J. C., Ramsay, G., … Taylor, M. A. (2010). The Metabolic and Developmental Roles of Carotenoid Cleavage Dioxygenase4 from Potato. Plant Physiology, 154(2), 656-664. doi:10.1104/pp.110.158733

Carmona, M., Zalacain, A., Sánchez, A. M., Novella, J. L., & Alonso, G. L. (2006). Crocetin Esters, Picrocrocin and Its Related Compounds Present inCrocus sativusStigmas andGardenia jasminoidesFruits. Tentative Identification of Seven New Compounds by LC-ESI-MS. Journal of Agricultural and Food Chemistry, 54(3), 973-979. doi:10.1021/jf052297w

Castillo, R., Fernández, J.-A., & Gómez-Gómez, L. (2005). Implications of Carotenoid Biosynthetic Genes in Apocarotenoid Formation during the Stigma Development of Crocus sativus and Its Closer Relatives. Plant Physiology, 139(2), 674-689. doi:10.1104/pp.105.067827

Cunningham, F. X., & Gantt, E. (1998). GENES AND ENZYMES OF CAROTENOID BIOSYNTHESIS IN PLANTS. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 557-583. doi:10.1146/annurev.arplant.49.1.557

Dela Seña, C., Sun, J., Narayanasamy, S., Riedl, K. M., Yuan, Y., Curley, R. W., … Harrison, E. H. (2016). Substrate Specificity of Purified Recombinant Chicken β-Carotene 9′,10′-Oxygenase (BCO2). Journal of Biological Chemistry, 291(28), 14609-14619. doi:10.1074/jbc.m116.723684

Domonkos, I., Kis, M., Gombos, Z., & Ughy, B. (2013). Carotenoids, versatile components of oxygenic photosynthesis. Progress in Lipid Research, 52(4), 539-561. doi:10.1016/j.plipres.2013.07.001

Edelheit, O., Hanukoglu, A., & Hanukoglu, I. (2009). Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnology, 9(1), 61. doi:10.1186/1472-6750-9-61

Fiedor, J., & Burda, K. (2014). Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients, 6(2), 466-488. doi:10.3390/nu6020466

Frusciante, S., Diretto, G., Bruno, M., Ferrante, P., Pietrella, M., Prado-Cabrero, A., … Giuliano, G. (2014). Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proceedings of the National Academy of Sciences, 111(33), 12246-12251. doi:10.1073/pnas.1404629111

Gadgoli, C., & Shelke, S. (2010). Crocetin from the tubular calyx ofNyctanthes arbor-tristis. Natural Product Research, 24(17), 1610-1615. doi:10.1080/14786411003754363

García-Martín, A., Pazur, A., Wilhelm, B., Silber, M., Robert, B., & Braun, P. (2008). The Role of Aromatic Phenylalanine Residues in Binding Carotenoid to Light-Harvesting Model and Wild-Type Complexes. Journal of Molecular Biology, 382(1), 154-166. doi:10.1016/j.jmb.2008.07.002

Goff, S. A. (2006). Plant Volatile Compounds: Sensory Cues for Health and Nutritional Value? Science, 311(5762), 815-819. doi:10.1126/science.1112614

Gonzalez-Jorge, S., Ha, S.-H., Magallanes-Lundback, M., Gilliland, L. U., Zhou, A., Lipka, A. E., … DellaPenna, D. (2013). CAROTENOID CLEAVAGE DIOXYGENASE4 Is a Negative Regulator of β-Carotene Content in Arabidopsis Seeds. The Plant Cell, 25(12), 4812-4826. doi:10.1105/tpc.113.119677

González-Verdejo, C. I., Obrero, Á., Román, B., & Gómez, P. (2015). Expression Profile of Carotenoid Cleavage Dioxygenase Genes in Summer Squash (Cucurbita pepo L.). Plant Foods for Human Nutrition, 70(2), 200-206. doi:10.1007/s11130-015-0482-9

Huang, F.-C., Molnár, P., & Schwab, W. (2009). Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. Journal of Experimental Botany, 60(11), 3011-3022. doi:10.1093/jxb/erp137

Ilg, A., Beyer, P., & Al-Babili, S. (2008). Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS Journal, 276(3), 736-747. doi:10.1111/j.1742-4658.2008.06820.x

Innan, H., & Kondrashov, F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nature Reviews Genetics, 11(2), 97-108. doi:10.1038/nrg2689

Kingsley, L. J., & Lill, M. A. (2015). Substrate tunnels in enzymes: Structure-function relationships and computational methodology. Proteins: Structure, Function, and Bioinformatics, 83(4), 599-611. doi:10.1002/prot.24772

Kiser, P. D., Farquhar, E. R., Shi, W., Sui, X., Chance, M. R., & Palczewski, K. (2012). Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis. Proceedings of the National Academy of Sciences, 109(41), E2747-E2756. doi:10.1073/pnas.1212025109

Kloer, D. P., & Schulz, G. E. (2006). Structural and biological aspects of carotenoid cleavage. Cellular and Molecular Life Sciences, 63(19-20), 2291-2303. doi:10.1007/s00018-006-6176-6

Lashbrooke, J. G., Young, P. R., Dockrall, S. J., Vasanth, K., & Vivier, M. A. (2013). Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family. BMC Plant Biology, 13(1), 156. doi:10.1186/1471-2229-13-156

Ma, G., Zhang, L., Matsuta, A., Matsutani, K., Yamawaki, K., Yahata, M., … Kato, M. (2013). Enzymatic Formation of  -Citraurin from  -Cryptoxanthin and Zeaxanthin by Carotenoid Cleavage Dioxygenase4 in the Flavedo of Citrus Fruit. PLANT PHYSIOLOGY, 163(2), 682-695. doi:10.1104/pp.113.223297

Mathieu, S., Terrier, N., Procureur, J., Bigey, F., & Günata, Z. (2005). A Carotenoid Cleavage Dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. Journal of Experimental Botany, 56(420), 2721-2731. doi:10.1093/jxb/eri265

Mein, J. R., Dolnikowski, G. G., Ernst, H., Russell, R. M., & Wang, X.-D. (2011). Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9′,10′-monooxygenase. Archives of Biochemistry and Biophysics, 506(1), 109-121. doi:10.1016/j.abb.2010.11.005

Melnicki, M. R., Leverenz, R. L., Sutter, M., López-Igual, R., Wilson, A., Pawlowski, E. G., … Kerfeld, C. A. (2016). Structure, Diversity, and Evolution of a New Family of Soluble Carotenoid-Binding Proteins in Cyanobacteria. Molecular Plant, 9(10), 1379-1394. doi:10.1016/j.molp.2016.06.009

Messing, S. A. J., Gabelli, S. B., Echeverria, I., Vogel, J. T., Guan, J. C., Tan, B. C., … Amzel, L. M. (2010). Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid. The Plant Cell, 22(9), 2970-2980. doi:10.1105/tpc.110.074815

Moraga, Á. R., Rambla, J. L., Ahrazem, O., Granell, A., & Gómez-Gómez, L. (2009). Metabolite and target transcript analyses during Crocus sativus stigma development. Phytochemistry, 70(8), 1009-1016. doi:10.1016/j.phytochem.2009.04.022

Nagatoshi, M., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A., & Mizukami, H. (2012). UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin inGardenia jasminoides. FEBS Letters, 586(7), 1055-1061. doi:10.1016/j.febslet.2012.03.003

Oberhauser, V., Voolstra, O., Bangert, A., von Lintig, J., & Vogt, K. (2008). NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide. Proceedings of the National Academy of Sciences, 105(48), 19000-19005. doi:10.1073/pnas.0807805105

OHMIYA, A. (2011). Diversity of Carotenoid Composition in Flower Petals. Japan Agricultural Research Quarterly: JARQ, 45(2), 163-171. doi:10.6090/jarq.45.163

Ohmiya, A., Kishimoto, S., Aida, R., Yoshioka, S., & Sumitomo, K. (2006). Carotenoid Cleavage Dioxygenase (CmCCD4a) Contributes to White Color Formation in Chrysanthemum Petals. Plant Physiology, 142(3), 1193-1201. doi:10.1104/pp.106.087130

Paech, K. (1955). Colour Development in Flowers. Annual Review of Plant Physiology, 6(1), 273-298. doi:10.1146/annurev.pp.06.060155.001421

Petřek, M., Košinová, P., Koča, J., & Otyepka, M. (2007). MOLE: A Voronoi Diagram-Based Explorer of Molecular Channels, Pores, and Tunnels. Structure, 15(11), 1357-1363. doi:10.1016/j.str.2007.10.007

Pfander, H., & Schurtenberger, H. (1982). Biosynthesis of C20-carotenoids in Crocus sativus. Phytochemistry, 21(5), 1039-1042. doi:10.1016/s0031-9422(00)82412-7

Rodrigo, M. J., Alquézar, B., Alós, E., Medina, V., Carmona, L., Bruno, M., … Zacarías, L. (2013). A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments. Journal of Experimental Botany, 64(14), 4461-4478. doi:10.1093/jxb/ert260

Rubio-Moraga, A., Rambla, J. L., Fernández-de-Carmen, A., Trapero-Mozos, A., Ahrazem, O., Orzáez, D., … Gómez-Gómez, L. (2014). New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Plant Molecular Biology, 86(4-5), 555-569. doi:10.1007/s11103-014-0250-5

Rubio, A., Rambla, J. L., Santaella, M., Gómez, M. D., Orzaez, D., Granell, A., & Gómez-Gómez, L. (2008). Cytosolic and Plastoglobule-targeted Carotenoid Dioxygenases fromCrocus sativusAre Both Involved in β-Ionone Release. Journal of Biological Chemistry, 283(36), 24816-24825. doi:10.1074/jbc.m804000200

Rubio Moraga, A., Ahrazem, O., Rambla, J. L., Granell, A., & Gómez Gómez, L. (2013). Crocins with High Levels of Sugar Conjugation Contribute to the Yellow Colours of Early-Spring Flowering Crocus Tepals. PLoS ONE, 8(9), e71946. doi:10.1371/journal.pone.0071946

Sarrion-Perdigones, A., Vazquez-Vilar, M., Palaci, J., Castelijns, B., Forment, J., Ziarsolo, P., … Orzaez, D. (2013). GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology. PLANT PHYSIOLOGY, 162(3), 1618-1631. doi:10.1104/pp.113.217661

Scherzinger, D., Scheffer, E., Bär, C., Ernst, H., & Al-Babili, S. (2010). The Mycobacterium tuberculosis ORF Rv0654 encodes a carotenoid oxygenase mediating central and excentric cleavage of conventional and aromatic carotenoids. FEBS Journal, 277(22), 4662-4673. doi:10.1111/j.1742-4658.2010.07873.x

Schwartz, S. H., Qin, X., & Zeevaart, J. A. D. (2001). Characterization of a Novel Carotenoid Cleavage Dioxygenase from Plants. Journal of Biological Chemistry, 276(27), 25208-25211. doi:10.1074/jbc.m102146200

Schwartz, S. H. (1997). Specific Oxidative Cleavage of Carotenoids by VP14 of Maize. Science, 276(5320), 1872-1874. doi:10.1126/science.276.5320.1872

Sui, X., Golczak, M., Zhang, J., Kleinberg, K. A., von Lintig, J., Palczewski, K., & Kiser, P. D. (2015). Utilization of Dioxygen by Carotenoid Cleavage Oxygenases. Journal of Biological Chemistry, 290(51), 30212-30223. doi:10.1074/jbc.m115.696799

Sui, X., Kiser, P. D., Lintig, J. von, & Palczewski, K. (2013). Structural basis of carotenoid cleavage: From bacteria to mammals. Archives of Biochemistry and Biophysics, 539(2), 203-213. doi:10.1016/j.abb.2013.06.012

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. doi:10.1093/molbev/mst197

Tuan, P. A., Kim, J. K., Lee, S., Chae, S. C., & Park, S. U. (2013). Molecular Characterization of Carotenoid Cleavage Dioxygenases and the Effect of Gibberellin, Abscisic Acid, and Sodium Chloride on the Expression of Genes Involved in the Carotenoid Biosynthetic Pathway and Carotenoid Accumulation in the Callus of Scutellaria baicalensis Georgi. Journal of Agricultural and Food Chemistry, 61(23), 5565-5572. doi:10.1021/jf401401w

Vogel, J. T., Tan, B.-C., McCarty, D. R., & Klee, H. J. (2008). The Carotenoid Cleavage Dioxygenase 1 Enzyme Has Broad Substrate Specificity, Cleaving Multiple Carotenoids at Two Different Bond Positions. Journal of Biological Chemistry, 283(17), 11364-11373. doi:10.1074/jbc.m710106200

Walter, M. H., Fester, T., & Strack, D. (2000). Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’ and other apocarotenoids. The Plant Journal, 21(6), 571-578. doi:10.1046/j.1365-313x.2000.00708.x

Walter, M. H., & Strack, D. (2011). Carotenoids and their cleavage products: Biosynthesis and functions. Natural Product Reports, 28(4), 663. doi:10.1039/c0np00036a

Wiseman, E. M., Bar-El Dadon, S., & Reifen, R. (2017). The vicious cycle of vitamin a deficiency: A review. Critical Reviews in Food Science and Nutrition, 57(17), 3703-3714. doi:10.1080/10408398.2016.1160362

Yang, J., Roy, A., & Zhang, Y. (2013). Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics, 29(20), 2588-2595. doi:10.1093/bioinformatics/btt447

Ytterberg, A. J., Peltier, J.-B., & van Wijk, K. J. (2006). Protein Profiling of Plastoglobules in Chloroplasts and Chromoplasts. A Surprising Site for Differential Accumulation of Metabolic Enzymes. Plant Physiology, 140(3), 984-997. doi:10.1104/pp.105.076083

Yuan, H., Zhang, J., Nageswaran, D., & Li, L. (2015). Carotenoid metabolism and regulation in horticultural crops. Horticulture Research, 2(1). doi:10.1038/hortres.2015.36

Zhang, B., Liu, C., Wang, Y., Yao, X., Wang, F., Wu, J., … Liu, K. (2015). Disruption of aCAROTENOID CLEAVAGE DIOXYGENASE 4gene converts flower colour from white to yellow inBrassicaspecies. New Phytologist, 206(4), 1513-1526. doi:10.1111/nph.13335

Zheng, X., Xie, Z., Zhu, K., Xu, Q., Deng, X., & Pan, Z. (2015). Isolation and characterization of carotenoid cleavage dioxygenase 4 genes from different citrus species. Molecular Genetics and Genomics, 290(4), 1589-1603. doi:10.1007/s00438-015-1016-8

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record