Ahrazem, O., Rubio-Moraga, A., Argandoña-Picazo, J., Castillo, R., & Gómez-Gómez, L. (2016). Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron. Plant Molecular Biology, 91(3), 355-374. doi:10.1007/s11103-016-0473-8
Ahrazem, O., Rubio-Moraga, A., Berman, J., Capell, T., Christou, P., Zhu, C., & Gómez-Gómez, L. (2015). The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. New Phytologist, 209(2), 650-663. doi:10.1111/nph.13609
Ahrazem, O., Rubio-Moraga, A., Nebauer, S. G., Molina, R. V., & Gómez-Gómez, L. (2015). Saffron: Its Phytochemistry, Developmental Processes, and Biotechnological Prospects. Journal of Agricultural and Food Chemistry, 63(40), 8751-8764. doi:10.1021/acs.jafc.5b03194
[+]
Ahrazem, O., Rubio-Moraga, A., Argandoña-Picazo, J., Castillo, R., & Gómez-Gómez, L. (2016). Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron. Plant Molecular Biology, 91(3), 355-374. doi:10.1007/s11103-016-0473-8
Ahrazem, O., Rubio-Moraga, A., Berman, J., Capell, T., Christou, P., Zhu, C., & Gómez-Gómez, L. (2015). The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. New Phytologist, 209(2), 650-663. doi:10.1111/nph.13609
Ahrazem, O., Rubio-Moraga, A., Nebauer, S. G., Molina, R. V., & Gómez-Gómez, L. (2015). Saffron: Its Phytochemistry, Developmental Processes, and Biotechnological Prospects. Journal of Agricultural and Food Chemistry, 63(40), 8751-8764. doi:10.1021/acs.jafc.5b03194
Ahrazem, O., Trapero, A., Gómez, M. D., Rubio-Moraga, A., & Gómez-Gómez, L. (2010). Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: A deeper study in Crocus sativus and its allies. Genomics, 96(4), 239-250. doi:10.1016/j.ygeno.2010.07.003
Al-Babili, S., & Bouwmeester, H. J. (2015). Strigolactones, a Novel Carotenoid-Derived Plant Hormone. Annual Review of Plant Biology, 66(1), 161-186. doi:10.1146/annurev-arplant-043014-114759
Auldridge, M. E., McCarty, D. R., & Klee, H. J. (2006). Plant carotenoid cleavage oxygenases and their apocarotenoid products. Current Opinion in Plant Biology, 9(3), 315-321. doi:10.1016/j.pbi.2006.03.005
Avendaño-Vázquez, A.-O., Cordoba, E., Llamas, E., San Román, C., Nisar, N., De la Torre, S., … León, P. (2014). An Uncharacterized Apocarotenoid-Derived Signal Generated in ζ-Carotene Desaturase Mutants Regulates Leaf Development and the Expression of Chloroplast and Nuclear Genes in Arabidopsis. The Plant Cell, 26(6), 2524-2537. doi:10.1105/tpc.114.123349
Brandi, F., Bar, E., Mourgues, F., Horváth, G., Turcsi, E., Giuliano, G., … Rosati, C. (2011). Study of «Redhaven» peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biology, 11(1), 24. doi:10.1186/1471-2229-11-24
Bruno, M., Beyer, P., & Al-Babili, S. (2015). The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls. Archives of Biochemistry and Biophysics, 572, 126-133. doi:10.1016/j.abb.2015.02.011
Buah, S., Mlalazi, B., Khanna, H., Dale, J. L., & Mortimer, C. L. (2016). The Quest for Golden Bananas: Investigating Carotenoid Regulation in a Fe’i Group Musa Cultivar. Journal of Agricultural and Food Chemistry, 64(16), 3176-3185. doi:10.1021/acs.jafc.5b05740
Burmester, A., Richter, M., Schultze, K., Voelz, K., Schachtschabel, D., Boland, W., … Schimek, C. (2007). Cleavage of β-carotene as the first step in sexual hormone synthesis in zygomycetes is mediated by a trisporic acid regulated β-carotene oxygenase. Fungal Genetics and Biology, 44(11), 1096-1108. doi:10.1016/j.fgb.2007.07.008
Campbell, R., Ducreux, L. J. M., Morris, W. L., Morris, J. A., Suttle, J. C., Ramsay, G., … Taylor, M. A. (2010). The Metabolic and Developmental Roles of Carotenoid Cleavage Dioxygenase4 from Potato. Plant Physiology, 154(2), 656-664. doi:10.1104/pp.110.158733
Carmona, M., Zalacain, A., Sánchez, A. M., Novella, J. L., & Alonso, G. L. (2006). Crocetin Esters, Picrocrocin and Its Related Compounds Present inCrocus sativusStigmas andGardenia jasminoidesFruits. Tentative Identification of Seven New Compounds by LC-ESI-MS. Journal of Agricultural and Food Chemistry, 54(3), 973-979. doi:10.1021/jf052297w
Castillo, R., Fernández, J.-A., & Gómez-Gómez, L. (2005). Implications of Carotenoid Biosynthetic Genes in Apocarotenoid Formation during the Stigma Development of Crocus sativus and Its Closer Relatives. Plant Physiology, 139(2), 674-689. doi:10.1104/pp.105.067827
Cunningham, F. X., & Gantt, E. (1998). GENES AND ENZYMES OF CAROTENOID BIOSYNTHESIS IN PLANTS. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 557-583. doi:10.1146/annurev.arplant.49.1.557
Dela Seña, C., Sun, J., Narayanasamy, S., Riedl, K. M., Yuan, Y., Curley, R. W., … Harrison, E. H. (2016). Substrate Specificity of Purified Recombinant Chicken β-Carotene 9′,10′-Oxygenase (BCO2). Journal of Biological Chemistry, 291(28), 14609-14619. doi:10.1074/jbc.m116.723684
Domonkos, I., Kis, M., Gombos, Z., & Ughy, B. (2013). Carotenoids, versatile components of oxygenic photosynthesis. Progress in Lipid Research, 52(4), 539-561. doi:10.1016/j.plipres.2013.07.001
Edelheit, O., Hanukoglu, A., & Hanukoglu, I. (2009). Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnology, 9(1), 61. doi:10.1186/1472-6750-9-61
Fiedor, J., & Burda, K. (2014). Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients, 6(2), 466-488. doi:10.3390/nu6020466
Frusciante, S., Diretto, G., Bruno, M., Ferrante, P., Pietrella, M., Prado-Cabrero, A., … Giuliano, G. (2014). Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proceedings of the National Academy of Sciences, 111(33), 12246-12251. doi:10.1073/pnas.1404629111
Gadgoli, C., & Shelke, S. (2010). Crocetin from the tubular calyx ofNyctanthes arbor-tristis. Natural Product Research, 24(17), 1610-1615. doi:10.1080/14786411003754363
García-Martín, A., Pazur, A., Wilhelm, B., Silber, M., Robert, B., & Braun, P. (2008). The Role of Aromatic Phenylalanine Residues in Binding Carotenoid to Light-Harvesting Model and Wild-Type Complexes. Journal of Molecular Biology, 382(1), 154-166. doi:10.1016/j.jmb.2008.07.002
Goff, S. A. (2006). Plant Volatile Compounds: Sensory Cues for Health and Nutritional Value? Science, 311(5762), 815-819. doi:10.1126/science.1112614
Gonzalez-Jorge, S., Ha, S.-H., Magallanes-Lundback, M., Gilliland, L. U., Zhou, A., Lipka, A. E., … DellaPenna, D. (2013). CAROTENOID CLEAVAGE DIOXYGENASE4 Is a Negative Regulator of β-Carotene Content in Arabidopsis Seeds. The Plant Cell, 25(12), 4812-4826. doi:10.1105/tpc.113.119677
González-Verdejo, C. I., Obrero, Á., Román, B., & Gómez, P. (2015). Expression Profile of Carotenoid Cleavage Dioxygenase Genes in Summer Squash (Cucurbita pepo L.). Plant Foods for Human Nutrition, 70(2), 200-206. doi:10.1007/s11130-015-0482-9
Huang, F.-C., Molnár, P., & Schwab, W. (2009). Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. Journal of Experimental Botany, 60(11), 3011-3022. doi:10.1093/jxb/erp137
Ilg, A., Beyer, P., & Al-Babili, S. (2008). Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS Journal, 276(3), 736-747. doi:10.1111/j.1742-4658.2008.06820.x
Innan, H., & Kondrashov, F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nature Reviews Genetics, 11(2), 97-108. doi:10.1038/nrg2689
Kingsley, L. J., & Lill, M. A. (2015). Substrate tunnels in enzymes: Structure-function relationships and computational methodology. Proteins: Structure, Function, and Bioinformatics, 83(4), 599-611. doi:10.1002/prot.24772
Kiser, P. D., Farquhar, E. R., Shi, W., Sui, X., Chance, M. R., & Palczewski, K. (2012). Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis. Proceedings of the National Academy of Sciences, 109(41), E2747-E2756. doi:10.1073/pnas.1212025109
Kloer, D. P., & Schulz, G. E. (2006). Structural and biological aspects of carotenoid cleavage. Cellular and Molecular Life Sciences, 63(19-20), 2291-2303. doi:10.1007/s00018-006-6176-6
Lashbrooke, J. G., Young, P. R., Dockrall, S. J., Vasanth, K., & Vivier, M. A. (2013). Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family. BMC Plant Biology, 13(1), 156. doi:10.1186/1471-2229-13-156
Ma, G., Zhang, L., Matsuta, A., Matsutani, K., Yamawaki, K., Yahata, M., … Kato, M. (2013). Enzymatic Formation of -Citraurin from -Cryptoxanthin and Zeaxanthin by Carotenoid Cleavage Dioxygenase4 in the Flavedo of Citrus Fruit. PLANT PHYSIOLOGY, 163(2), 682-695. doi:10.1104/pp.113.223297
Mathieu, S., Terrier, N., Procureur, J., Bigey, F., & Günata, Z. (2005). A Carotenoid Cleavage Dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. Journal of Experimental Botany, 56(420), 2721-2731. doi:10.1093/jxb/eri265
Mein, J. R., Dolnikowski, G. G., Ernst, H., Russell, R. M., & Wang, X.-D. (2011). Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9′,10′-monooxygenase. Archives of Biochemistry and Biophysics, 506(1), 109-121. doi:10.1016/j.abb.2010.11.005
Melnicki, M. R., Leverenz, R. L., Sutter, M., López-Igual, R., Wilson, A., Pawlowski, E. G., … Kerfeld, C. A. (2016). Structure, Diversity, and Evolution of a New Family of Soluble Carotenoid-Binding Proteins in Cyanobacteria. Molecular Plant, 9(10), 1379-1394. doi:10.1016/j.molp.2016.06.009
Messing, S. A. J., Gabelli, S. B., Echeverria, I., Vogel, J. T., Guan, J. C., Tan, B. C., … Amzel, L. M. (2010). Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid. The Plant Cell, 22(9), 2970-2980. doi:10.1105/tpc.110.074815
Moraga, Á. R., Rambla, J. L., Ahrazem, O., Granell, A., & Gómez-Gómez, L. (2009). Metabolite and target transcript analyses during Crocus sativus stigma development. Phytochemistry, 70(8), 1009-1016. doi:10.1016/j.phytochem.2009.04.022
Nagatoshi, M., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A., & Mizukami, H. (2012). UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin inGardenia jasminoides. FEBS Letters, 586(7), 1055-1061. doi:10.1016/j.febslet.2012.03.003
Oberhauser, V., Voolstra, O., Bangert, A., von Lintig, J., & Vogt, K. (2008). NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide. Proceedings of the National Academy of Sciences, 105(48), 19000-19005. doi:10.1073/pnas.0807805105
OHMIYA, A. (2011). Diversity of Carotenoid Composition in Flower Petals. Japan Agricultural Research Quarterly: JARQ, 45(2), 163-171. doi:10.6090/jarq.45.163
Ohmiya, A., Kishimoto, S., Aida, R., Yoshioka, S., & Sumitomo, K. (2006). Carotenoid Cleavage Dioxygenase (CmCCD4a) Contributes to White Color Formation in Chrysanthemum Petals. Plant Physiology, 142(3), 1193-1201. doi:10.1104/pp.106.087130
Paech, K. (1955). Colour Development in Flowers. Annual Review of Plant Physiology, 6(1), 273-298. doi:10.1146/annurev.pp.06.060155.001421
Petřek, M., Košinová, P., Koča, J., & Otyepka, M. (2007). MOLE: A Voronoi Diagram-Based Explorer of Molecular Channels, Pores, and Tunnels. Structure, 15(11), 1357-1363. doi:10.1016/j.str.2007.10.007
Pfander, H., & Schurtenberger, H. (1982). Biosynthesis of C20-carotenoids in Crocus sativus. Phytochemistry, 21(5), 1039-1042. doi:10.1016/s0031-9422(00)82412-7
Rodrigo, M. J., Alquézar, B., Alós, E., Medina, V., Carmona, L., Bruno, M., … Zacarías, L. (2013). A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments. Journal of Experimental Botany, 64(14), 4461-4478. doi:10.1093/jxb/ert260
Rubio-Moraga, A., Rambla, J. L., Fernández-de-Carmen, A., Trapero-Mozos, A., Ahrazem, O., Orzáez, D., … Gómez-Gómez, L. (2014). New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Plant Molecular Biology, 86(4-5), 555-569. doi:10.1007/s11103-014-0250-5
Rubio, A., Rambla, J. L., Santaella, M., Gómez, M. D., Orzaez, D., Granell, A., & Gómez-Gómez, L. (2008). Cytosolic and Plastoglobule-targeted Carotenoid Dioxygenases fromCrocus sativusAre Both Involved in β-Ionone Release. Journal of Biological Chemistry, 283(36), 24816-24825. doi:10.1074/jbc.m804000200
Rubio Moraga, A., Ahrazem, O., Rambla, J. L., Granell, A., & Gómez Gómez, L. (2013). Crocins with High Levels of Sugar Conjugation Contribute to the Yellow Colours of Early-Spring Flowering Crocus Tepals. PLoS ONE, 8(9), e71946. doi:10.1371/journal.pone.0071946
Sarrion-Perdigones, A., Vazquez-Vilar, M., Palaci, J., Castelijns, B., Forment, J., Ziarsolo, P., … Orzaez, D. (2013). GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology. PLANT PHYSIOLOGY, 162(3), 1618-1631. doi:10.1104/pp.113.217661
Scherzinger, D., Scheffer, E., Bär, C., Ernst, H., & Al-Babili, S. (2010). The Mycobacterium tuberculosis ORF Rv0654 encodes a carotenoid oxygenase mediating central and excentric cleavage of conventional and aromatic carotenoids. FEBS Journal, 277(22), 4662-4673. doi:10.1111/j.1742-4658.2010.07873.x
Schwartz, S. H., Qin, X., & Zeevaart, J. A. D. (2001). Characterization of a Novel Carotenoid Cleavage Dioxygenase from Plants. Journal of Biological Chemistry, 276(27), 25208-25211. doi:10.1074/jbc.m102146200
Schwartz, S. H. (1997). Specific Oxidative Cleavage of Carotenoids by VP14 of Maize. Science, 276(5320), 1872-1874. doi:10.1126/science.276.5320.1872
Sui, X., Golczak, M., Zhang, J., Kleinberg, K. A., von Lintig, J., Palczewski, K., & Kiser, P. D. (2015). Utilization of Dioxygen by Carotenoid Cleavage Oxygenases. Journal of Biological Chemistry, 290(51), 30212-30223. doi:10.1074/jbc.m115.696799
Sui, X., Kiser, P. D., Lintig, J. von, & Palczewski, K. (2013). Structural basis of carotenoid cleavage: From bacteria to mammals. Archives of Biochemistry and Biophysics, 539(2), 203-213. doi:10.1016/j.abb.2013.06.012
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. doi:10.1093/molbev/mst197
Tuan, P. A., Kim, J. K., Lee, S., Chae, S. C., & Park, S. U. (2013). Molecular Characterization of Carotenoid Cleavage Dioxygenases and the Effect of Gibberellin, Abscisic Acid, and Sodium Chloride on the Expression of Genes Involved in the Carotenoid Biosynthetic Pathway and Carotenoid Accumulation in the Callus of Scutellaria baicalensis Georgi. Journal of Agricultural and Food Chemistry, 61(23), 5565-5572. doi:10.1021/jf401401w
Vogel, J. T., Tan, B.-C., McCarty, D. R., & Klee, H. J. (2008). The Carotenoid Cleavage Dioxygenase 1 Enzyme Has Broad Substrate Specificity, Cleaving Multiple Carotenoids at Two Different Bond Positions. Journal of Biological Chemistry, 283(17), 11364-11373. doi:10.1074/jbc.m710106200
Walter, M. H., Fester, T., & Strack, D. (2000). Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’ and other apocarotenoids. The Plant Journal, 21(6), 571-578. doi:10.1046/j.1365-313x.2000.00708.x
Walter, M. H., & Strack, D. (2011). Carotenoids and their cleavage products: Biosynthesis and functions. Natural Product Reports, 28(4), 663. doi:10.1039/c0np00036a
Wiseman, E. M., Bar-El Dadon, S., & Reifen, R. (2017). The vicious cycle of vitamin a deficiency: A review. Critical Reviews in Food Science and Nutrition, 57(17), 3703-3714. doi:10.1080/10408398.2016.1160362
Yang, J., Roy, A., & Zhang, Y. (2013). Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics, 29(20), 2588-2595. doi:10.1093/bioinformatics/btt447
Ytterberg, A. J., Peltier, J.-B., & van Wijk, K. J. (2006). Protein Profiling of Plastoglobules in Chloroplasts and Chromoplasts. A Surprising Site for Differential Accumulation of Metabolic Enzymes. Plant Physiology, 140(3), 984-997. doi:10.1104/pp.105.076083
Yuan, H., Zhang, J., Nageswaran, D., & Li, L. (2015). Carotenoid metabolism and regulation in horticultural crops. Horticulture Research, 2(1). doi:10.1038/hortres.2015.36
Zhang, B., Liu, C., Wang, Y., Yao, X., Wang, F., Wu, J., … Liu, K. (2015). Disruption of aCAROTENOID CLEAVAGE DIOXYGENASE 4gene converts flower colour from white to yellow inBrassicaspecies. New Phytologist, 206(4), 1513-1526. doi:10.1111/nph.13335
Zheng, X., Xie, Z., Zhu, K., Xu, Q., Deng, X., & Pan, Z. (2015). Isolation and characterization of carotenoid cleavage dioxygenase 4 genes from different citrus species. Molecular Genetics and Genomics, 290(4), 1589-1603. doi:10.1007/s00438-015-1016-8
[-]