- -

Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ahrazem, Oussama es_ES
dc.contributor.author Diretto, G. es_ES
dc.contributor.author Argandoña, J. es_ES
dc.contributor.author Rubio-Moraga, Angela es_ES
dc.contributor.author Julve, J.M. es_ES
dc.contributor.author Orzáez Calatayud, Diego Vicente es_ES
dc.contributor.author GRANELL RICHART, ANTONIO es_ES
dc.contributor.author Gómez-Gómez, Lourdes es_ES
dc.date.accessioned 2020-07-21T03:31:18Z
dc.date.available 2020-07-21T03:31:18Z
dc.date.issued 2017-10-03 es_ES
dc.identifier.issn 0022-0957 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148362
dc.description.abstract [EN] Crocetin, one of the few colored apocarotenoids known in nature, is present in flowers and fruits and has long been used medicinally and as a colorant. Saffron is the main source of crocetin, although a few other plants produce lower amounts of this apocarotenoid. Notably, Buddleja davidii accumulates crocetin in its flowers. Recently, a carotenoid dioxygenase cleavage enzyme, CCD2, has been characterized as responsible for crocetin production in Crocus species. We searched for CCD2 homologues in B. davidii and identified several CCD enzymes from the CCD1 and CCD4 subfamilies. Unexpectedly, two out of the three CCD4 enzymes, namely BdCCD4.1 and BdCCD4.3, showed 7,8;7', 8' activity in vitro and in vivo over zeaxanthin. In silico analyses of these enzymes and CCD2 allowed the determination of key residues for this activity. Both BdCCD4 genes are highly expressed during flower development and transcripts levels parallel the accumulation of crocins in the petals. Phylogenetic analysis showed that BdCCD4.2 grouped with almost all the characterized CCD4 enzymes, while BdCCD4.1 and BdCCD4.3 form a new sub-cluster together with CCD4 enzymes from certain Lamiales species. The present study indicates that convergent evolution led to the acquisition of 7,8; 7', 8' apocarotenoid cleavage activity in two separate CCD enzyme families. es_ES
dc.description.sponsorship This work was supported by grants from the Spanish Ministerio de Economía y Competitividad (BIO2013-44239-R) and (BIO2016-77000-R). The laboratory participates in the CARNET network (BIO2015-71703-REDT) and EU-Cost action CA15136. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Journal of Experimental Botany es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Carotenoid dioxygenase cleavage es_ES
dc.subject Crocetin es_ES
dc.subject Flowers es_ES
dc.subject Lamiales es_ES
dc.subject Zeaxanthin es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/jxb/erx277 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2013-44239-R/ES/ELUCIDACION DE LA BIOSINTESIS, MODIFICACION, ACUMULACION Y REGULACION DE APOCAROTENOIDES EN AZAFRAN Y ESPECIES AFINES MEDIANTE APROXIMACIONES OMICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA15136/EU/European network to advance carotenoid research and applications in agro-food and health (EUROCAROTEN)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2016-77000-R/ES/ELUCIDACION DEL MAPA DE LOS APOCAROTENOIDES DURANTE EL DESARROLLO DEL AZAFRAN: DESDE PIGMENTOS A REGULADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2015-71703-REDT/ES/CAROTENOIDES EN RED: DE LOS MICROORGANISMOS Y LAS PLANTAS A LOS ALIMENTOS Y LA SALUD/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Ahrazem, O.; Diretto, G.; Argandoña, J.; Rubio-Moraga, A.; Julve, J.; Orzáez Calatayud, DV.; Granell Richart, A.... (2017). Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii. Journal of Experimental Botany. 68(16):4663-4677. https://doi.org/10.1093/jxb/erx277 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1093/jxb/erx277 es_ES
dc.description.upvformatpinicio 4663 es_ES
dc.description.upvformatpfin 4677 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 68 es_ES
dc.description.issue 16 es_ES
dc.identifier.pmid 28981773 es_ES
dc.relation.pasarela S\356410 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references Ahrazem, O., Rubio-Moraga, A., Argandoña-Picazo, J., Castillo, R., & Gómez-Gómez, L. (2016). Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron. Plant Molecular Biology, 91(3), 355-374. doi:10.1007/s11103-016-0473-8 es_ES
dc.description.references Ahrazem, O., Rubio-Moraga, A., Berman, J., Capell, T., Christou, P., Zhu, C., & Gómez-Gómez, L. (2015). The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. New Phytologist, 209(2), 650-663. doi:10.1111/nph.13609 es_ES
dc.description.references Ahrazem, O., Rubio-Moraga, A., Nebauer, S. G., Molina, R. V., & Gómez-Gómez, L. (2015). Saffron: Its Phytochemistry, Developmental Processes, and Biotechnological Prospects. Journal of Agricultural and Food Chemistry, 63(40), 8751-8764. doi:10.1021/acs.jafc.5b03194 es_ES
dc.description.references Ahrazem, O., Trapero, A., Gómez, M. D., Rubio-Moraga, A., & Gómez-Gómez, L. (2010). Genomic analysis and gene structure of the plant carotenoid dioxygenase 4 family: A deeper study in Crocus sativus and its allies. Genomics, 96(4), 239-250. doi:10.1016/j.ygeno.2010.07.003 es_ES
dc.description.references Al-Babili, S., & Bouwmeester, H. J. (2015). Strigolactones, a Novel Carotenoid-Derived Plant Hormone. Annual Review of Plant Biology, 66(1), 161-186. doi:10.1146/annurev-arplant-043014-114759 es_ES
dc.description.references Auldridge, M. E., McCarty, D. R., & Klee, H. J. (2006). Plant carotenoid cleavage oxygenases and their apocarotenoid products. Current Opinion in Plant Biology, 9(3), 315-321. doi:10.1016/j.pbi.2006.03.005 es_ES
dc.description.references Avendaño-Vázquez, A.-O., Cordoba, E., Llamas, E., San Román, C., Nisar, N., De la Torre, S., … León, P. (2014). An Uncharacterized Apocarotenoid-Derived Signal Generated in ζ-Carotene Desaturase Mutants Regulates Leaf Development and the Expression of Chloroplast and Nuclear Genes in Arabidopsis. The Plant Cell, 26(6), 2524-2537. doi:10.1105/tpc.114.123349 es_ES
dc.description.references Brandi, F., Bar, E., Mourgues, F., Horváth, G., Turcsi, E., Giuliano, G., … Rosati, C. (2011). Study of «Redhaven» peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biology, 11(1), 24. doi:10.1186/1471-2229-11-24 es_ES
dc.description.references Bruno, M., Beyer, P., & Al-Babili, S. (2015). The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls. Archives of Biochemistry and Biophysics, 572, 126-133. doi:10.1016/j.abb.2015.02.011 es_ES
dc.description.references Buah, S., Mlalazi, B., Khanna, H., Dale, J. L., & Mortimer, C. L. (2016). The Quest for Golden Bananas: Investigating Carotenoid Regulation in a Fe’i Group Musa Cultivar. Journal of Agricultural and Food Chemistry, 64(16), 3176-3185. doi:10.1021/acs.jafc.5b05740 es_ES
dc.description.references Burmester, A., Richter, M., Schultze, K., Voelz, K., Schachtschabel, D., Boland, W., … Schimek, C. (2007). Cleavage of β-carotene as the first step in sexual hormone synthesis in zygomycetes is mediated by a trisporic acid regulated β-carotene oxygenase. Fungal Genetics and Biology, 44(11), 1096-1108. doi:10.1016/j.fgb.2007.07.008 es_ES
dc.description.references Campbell, R., Ducreux, L. J. M., Morris, W. L., Morris, J. A., Suttle, J. C., Ramsay, G., … Taylor, M. A. (2010). The Metabolic and Developmental Roles of Carotenoid Cleavage Dioxygenase4 from Potato. Plant Physiology, 154(2), 656-664. doi:10.1104/pp.110.158733 es_ES
dc.description.references Carmona, M., Zalacain, A., Sánchez, A. M., Novella, J. L., & Alonso, G. L. (2006). Crocetin Esters, Picrocrocin and Its Related Compounds Present inCrocus sativusStigmas andGardenia jasminoidesFruits. Tentative Identification of Seven New Compounds by LC-ESI-MS. Journal of Agricultural and Food Chemistry, 54(3), 973-979. doi:10.1021/jf052297w es_ES
dc.description.references Castillo, R., Fernández, J.-A., & Gómez-Gómez, L. (2005). Implications of Carotenoid Biosynthetic Genes in Apocarotenoid Formation during the Stigma Development of Crocus sativus and Its Closer Relatives. Plant Physiology, 139(2), 674-689. doi:10.1104/pp.105.067827 es_ES
dc.description.references Cunningham, F. X., & Gantt, E. (1998). GENES AND ENZYMES OF CAROTENOID BIOSYNTHESIS IN PLANTS. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 557-583. doi:10.1146/annurev.arplant.49.1.557 es_ES
dc.description.references Dela Seña, C., Sun, J., Narayanasamy, S., Riedl, K. M., Yuan, Y., Curley, R. W., … Harrison, E. H. (2016). Substrate Specificity of Purified Recombinant Chicken β-Carotene 9′,10′-Oxygenase (BCO2). Journal of Biological Chemistry, 291(28), 14609-14619. doi:10.1074/jbc.m116.723684 es_ES
dc.description.references Domonkos, I., Kis, M., Gombos, Z., & Ughy, B. (2013). Carotenoids, versatile components of oxygenic photosynthesis. Progress in Lipid Research, 52(4), 539-561. doi:10.1016/j.plipres.2013.07.001 es_ES
dc.description.references Edelheit, O., Hanukoglu, A., & Hanukoglu, I. (2009). Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnology, 9(1), 61. doi:10.1186/1472-6750-9-61 es_ES
dc.description.references Fiedor, J., & Burda, K. (2014). Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients, 6(2), 466-488. doi:10.3390/nu6020466 es_ES
dc.description.references Frusciante, S., Diretto, G., Bruno, M., Ferrante, P., Pietrella, M., Prado-Cabrero, A., … Giuliano, G. (2014). Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Proceedings of the National Academy of Sciences, 111(33), 12246-12251. doi:10.1073/pnas.1404629111 es_ES
dc.description.references Gadgoli, C., & Shelke, S. (2010). Crocetin from the tubular calyx ofNyctanthes arbor-tristis. Natural Product Research, 24(17), 1610-1615. doi:10.1080/14786411003754363 es_ES
dc.description.references García-Martín, A., Pazur, A., Wilhelm, B., Silber, M., Robert, B., & Braun, P. (2008). The Role of Aromatic Phenylalanine Residues in Binding Carotenoid to Light-Harvesting Model and Wild-Type Complexes. Journal of Molecular Biology, 382(1), 154-166. doi:10.1016/j.jmb.2008.07.002 es_ES
dc.description.references Goff, S. A. (2006). Plant Volatile Compounds: Sensory Cues for Health and Nutritional Value? Science, 311(5762), 815-819. doi:10.1126/science.1112614 es_ES
dc.description.references Gonzalez-Jorge, S., Ha, S.-H., Magallanes-Lundback, M., Gilliland, L. U., Zhou, A., Lipka, A. E., … DellaPenna, D. (2013). CAROTENOID CLEAVAGE DIOXYGENASE4 Is a Negative Regulator of β-Carotene Content in Arabidopsis Seeds. The Plant Cell, 25(12), 4812-4826. doi:10.1105/tpc.113.119677 es_ES
dc.description.references González-Verdejo, C. I., Obrero, Á., Román, B., & Gómez, P. (2015). Expression Profile of Carotenoid Cleavage Dioxygenase Genes in Summer Squash (Cucurbita pepo L.). Plant Foods for Human Nutrition, 70(2), 200-206. doi:10.1007/s11130-015-0482-9 es_ES
dc.description.references Huang, F.-C., Molnár, P., & Schwab, W. (2009). Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. Journal of Experimental Botany, 60(11), 3011-3022. doi:10.1093/jxb/erp137 es_ES
dc.description.references Ilg, A., Beyer, P., & Al-Babili, S. (2008). Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis. FEBS Journal, 276(3), 736-747. doi:10.1111/j.1742-4658.2008.06820.x es_ES
dc.description.references Innan, H., & Kondrashov, F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nature Reviews Genetics, 11(2), 97-108. doi:10.1038/nrg2689 es_ES
dc.description.references Kingsley, L. J., & Lill, M. A. (2015). Substrate tunnels in enzymes: Structure-function relationships and computational methodology. Proteins: Structure, Function, and Bioinformatics, 83(4), 599-611. doi:10.1002/prot.24772 es_ES
dc.description.references Kiser, P. D., Farquhar, E. R., Shi, W., Sui, X., Chance, M. R., & Palczewski, K. (2012). Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis. Proceedings of the National Academy of Sciences, 109(41), E2747-E2756. doi:10.1073/pnas.1212025109 es_ES
dc.description.references Kloer, D. P., & Schulz, G. E. (2006). Structural and biological aspects of carotenoid cleavage. Cellular and Molecular Life Sciences, 63(19-20), 2291-2303. doi:10.1007/s00018-006-6176-6 es_ES
dc.description.references Lashbrooke, J. G., Young, P. R., Dockrall, S. J., Vasanth, K., & Vivier, M. A. (2013). Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family. BMC Plant Biology, 13(1), 156. doi:10.1186/1471-2229-13-156 es_ES
dc.description.references Ma, G., Zhang, L., Matsuta, A., Matsutani, K., Yamawaki, K., Yahata, M., … Kato, M. (2013). Enzymatic Formation of  -Citraurin from  -Cryptoxanthin and Zeaxanthin by Carotenoid Cleavage Dioxygenase4 in the Flavedo of Citrus Fruit. PLANT PHYSIOLOGY, 163(2), 682-695. doi:10.1104/pp.113.223297 es_ES
dc.description.references Mathieu, S., Terrier, N., Procureur, J., Bigey, F., & Günata, Z. (2005). A Carotenoid Cleavage Dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. Journal of Experimental Botany, 56(420), 2721-2731. doi:10.1093/jxb/eri265 es_ES
dc.description.references Mein, J. R., Dolnikowski, G. G., Ernst, H., Russell, R. M., & Wang, X.-D. (2011). Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9′,10′-monooxygenase. Archives of Biochemistry and Biophysics, 506(1), 109-121. doi:10.1016/j.abb.2010.11.005 es_ES
dc.description.references Melnicki, M. R., Leverenz, R. L., Sutter, M., López-Igual, R., Wilson, A., Pawlowski, E. G., … Kerfeld, C. A. (2016). Structure, Diversity, and Evolution of a New Family of Soluble Carotenoid-Binding Proteins in Cyanobacteria. Molecular Plant, 9(10), 1379-1394. doi:10.1016/j.molp.2016.06.009 es_ES
dc.description.references Messing, S. A. J., Gabelli, S. B., Echeverria, I., Vogel, J. T., Guan, J. C., Tan, B. C., … Amzel, L. M. (2010). Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid. The Plant Cell, 22(9), 2970-2980. doi:10.1105/tpc.110.074815 es_ES
dc.description.references Moraga, Á. R., Rambla, J. L., Ahrazem, O., Granell, A., & Gómez-Gómez, L. (2009). Metabolite and target transcript analyses during Crocus sativus stigma development. Phytochemistry, 70(8), 1009-1016. doi:10.1016/j.phytochem.2009.04.022 es_ES
dc.description.references Nagatoshi, M., Terasaka, K., Owaki, M., Sota, M., Inukai, T., Nagatsu, A., & Mizukami, H. (2012). UGT75L6 and UGT94E5 mediate sequential glucosylation of crocetin to crocin inGardenia jasminoides. FEBS Letters, 586(7), 1055-1061. doi:10.1016/j.febslet.2012.03.003 es_ES
dc.description.references Oberhauser, V., Voolstra, O., Bangert, A., von Lintig, J., & Vogt, K. (2008). NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide. Proceedings of the National Academy of Sciences, 105(48), 19000-19005. doi:10.1073/pnas.0807805105 es_ES
dc.description.references OHMIYA, A. (2011). Diversity of Carotenoid Composition in Flower Petals. Japan Agricultural Research Quarterly: JARQ, 45(2), 163-171. doi:10.6090/jarq.45.163 es_ES
dc.description.references Ohmiya, A., Kishimoto, S., Aida, R., Yoshioka, S., & Sumitomo, K. (2006). Carotenoid Cleavage Dioxygenase (CmCCD4a) Contributes to White Color Formation in Chrysanthemum Petals. Plant Physiology, 142(3), 1193-1201. doi:10.1104/pp.106.087130 es_ES
dc.description.references Paech, K. (1955). Colour Development in Flowers. Annual Review of Plant Physiology, 6(1), 273-298. doi:10.1146/annurev.pp.06.060155.001421 es_ES
dc.description.references Petřek, M., Košinová, P., Koča, J., & Otyepka, M. (2007). MOLE: A Voronoi Diagram-Based Explorer of Molecular Channels, Pores, and Tunnels. Structure, 15(11), 1357-1363. doi:10.1016/j.str.2007.10.007 es_ES
dc.description.references Pfander, H., & Schurtenberger, H. (1982). Biosynthesis of C20-carotenoids in Crocus sativus. Phytochemistry, 21(5), 1039-1042. doi:10.1016/s0031-9422(00)82412-7 es_ES
dc.description.references Rodrigo, M. J., Alquézar, B., Alós, E., Medina, V., Carmona, L., Bruno, M., … Zacarías, L. (2013). A novel carotenoid cleavage activity involved in the biosynthesis of Citrus fruit-specific apocarotenoid pigments. Journal of Experimental Botany, 64(14), 4461-4478. doi:10.1093/jxb/ert260 es_ES
dc.description.references Rubio-Moraga, A., Rambla, J. L., Fernández-de-Carmen, A., Trapero-Mozos, A., Ahrazem, O., Orzáez, D., … Gómez-Gómez, L. (2014). New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Plant Molecular Biology, 86(4-5), 555-569. doi:10.1007/s11103-014-0250-5 es_ES
dc.description.references Rubio, A., Rambla, J. L., Santaella, M., Gómez, M. D., Orzaez, D., Granell, A., & Gómez-Gómez, L. (2008). Cytosolic and Plastoglobule-targeted Carotenoid Dioxygenases fromCrocus sativusAre Both Involved in β-Ionone Release. Journal of Biological Chemistry, 283(36), 24816-24825. doi:10.1074/jbc.m804000200 es_ES
dc.description.references Rubio Moraga, A., Ahrazem, O., Rambla, J. L., Granell, A., & Gómez Gómez, L. (2013). Crocins with High Levels of Sugar Conjugation Contribute to the Yellow Colours of Early-Spring Flowering Crocus Tepals. PLoS ONE, 8(9), e71946. doi:10.1371/journal.pone.0071946 es_ES
dc.description.references Sarrion-Perdigones, A., Vazquez-Vilar, M., Palaci, J., Castelijns, B., Forment, J., Ziarsolo, P., … Orzaez, D. (2013). GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology. PLANT PHYSIOLOGY, 162(3), 1618-1631. doi:10.1104/pp.113.217661 es_ES
dc.description.references Scherzinger, D., Scheffer, E., Bär, C., Ernst, H., & Al-Babili, S. (2010). The Mycobacterium tuberculosis ORF Rv0654 encodes a carotenoid oxygenase mediating central and excentric cleavage of conventional and aromatic carotenoids. FEBS Journal, 277(22), 4662-4673. doi:10.1111/j.1742-4658.2010.07873.x es_ES
dc.description.references Schwartz, S. H., Qin, X., & Zeevaart, J. A. D. (2001). Characterization of a Novel Carotenoid Cleavage Dioxygenase from Plants. Journal of Biological Chemistry, 276(27), 25208-25211. doi:10.1074/jbc.m102146200 es_ES
dc.description.references Schwartz, S. H. (1997). Specific Oxidative Cleavage of Carotenoids by VP14 of Maize. Science, 276(5320), 1872-1874. doi:10.1126/science.276.5320.1872 es_ES
dc.description.references Sui, X., Golczak, M., Zhang, J., Kleinberg, K. A., von Lintig, J., Palczewski, K., & Kiser, P. D. (2015). Utilization of Dioxygen by Carotenoid Cleavage Oxygenases. Journal of Biological Chemistry, 290(51), 30212-30223. doi:10.1074/jbc.m115.696799 es_ES
dc.description.references Sui, X., Kiser, P. D., Lintig, J. von, & Palczewski, K. (2013). Structural basis of carotenoid cleavage: From bacteria to mammals. Archives of Biochemistry and Biophysics, 539(2), 203-213. doi:10.1016/j.abb.2013.06.012 es_ES
dc.description.references Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. doi:10.1093/molbev/mst197 es_ES
dc.description.references Tuan, P. A., Kim, J. K., Lee, S., Chae, S. C., & Park, S. U. (2013). Molecular Characterization of Carotenoid Cleavage Dioxygenases and the Effect of Gibberellin, Abscisic Acid, and Sodium Chloride on the Expression of Genes Involved in the Carotenoid Biosynthetic Pathway and Carotenoid Accumulation in the Callus of Scutellaria baicalensis Georgi. Journal of Agricultural and Food Chemistry, 61(23), 5565-5572. doi:10.1021/jf401401w es_ES
dc.description.references Vogel, J. T., Tan, B.-C., McCarty, D. R., & Klee, H. J. (2008). The Carotenoid Cleavage Dioxygenase 1 Enzyme Has Broad Substrate Specificity, Cleaving Multiple Carotenoids at Two Different Bond Positions. Journal of Biological Chemistry, 283(17), 11364-11373. doi:10.1074/jbc.m710106200 es_ES
dc.description.references Walter, M. H., Fester, T., & Strack, D. (2000). Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the ‘yellow pigment’ and other apocarotenoids. The Plant Journal, 21(6), 571-578. doi:10.1046/j.1365-313x.2000.00708.x es_ES
dc.description.references Walter, M. H., & Strack, D. (2011). Carotenoids and their cleavage products: Biosynthesis and functions. Natural Product Reports, 28(4), 663. doi:10.1039/c0np00036a es_ES
dc.description.references Wiseman, E. M., Bar-El Dadon, S., & Reifen, R. (2017). The vicious cycle of vitamin a deficiency: A review. Critical Reviews in Food Science and Nutrition, 57(17), 3703-3714. doi:10.1080/10408398.2016.1160362 es_ES
dc.description.references Yang, J., Roy, A., & Zhang, Y. (2013). Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics, 29(20), 2588-2595. doi:10.1093/bioinformatics/btt447 es_ES
dc.description.references Ytterberg, A. J., Peltier, J.-B., & van Wijk, K. J. (2006). Protein Profiling of Plastoglobules in Chloroplasts and Chromoplasts. A Surprising Site for Differential Accumulation of Metabolic Enzymes. Plant Physiology, 140(3), 984-997. doi:10.1104/pp.105.076083 es_ES
dc.description.references Yuan, H., Zhang, J., Nageswaran, D., & Li, L. (2015). Carotenoid metabolism and regulation in horticultural crops. Horticulture Research, 2(1). doi:10.1038/hortres.2015.36 es_ES
dc.description.references Zhang, B., Liu, C., Wang, Y., Yao, X., Wang, F., Wu, J., … Liu, K. (2015). Disruption of aCAROTENOID CLEAVAGE DIOXYGENASE 4gene converts flower colour from white to yellow inBrassicaspecies. New Phytologist, 206(4), 1513-1526. doi:10.1111/nph.13335 es_ES
dc.description.references Zheng, X., Xie, Z., Zhu, K., Xu, Q., Deng, X., & Pan, Z. (2015). Isolation and characterization of carotenoid cleavage dioxygenase 4 genes from different citrus species. Molecular Genetics and Genomics, 290(4), 1589-1603. doi:10.1007/s00438-015-1016-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem