Mostrar el registro sencillo del ítem
dc.contributor.author | Llopis-Lorente, Antoni | es_ES |
dc.contributor.author | Díez, Paula | es_ES |
dc.contributor.author | De La Torre-Paredes, Cristina | es_ES |
dc.contributor.author | Sanchez, Alfredo | es_ES |
dc.contributor.author | Sancenón Galarza, Félix | es_ES |
dc.contributor.author | Aznar, Elena | es_ES |
dc.contributor.author | Marcos Martínez, María Dolores | es_ES |
dc.contributor.author | Martínez-Ruíz, Paloma | es_ES |
dc.contributor.author | Martínez-Máñez, Ramón | es_ES |
dc.contributor.author | Villalonga, Reynaldo | es_ES |
dc.date.accessioned | 2020-07-22T03:31:45Z | |
dc.date.available | 2020-07-22T03:31:45Z | |
dc.date.issued | 2017-03-28 | es_ES |
dc.identifier.issn | 0947-6539 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148460 | |
dc.description | "This is the peer reviewed version of the following article: Llopis-Lorente, Antoni, Paula Díez, Cristina de la Torre, Alfredo Sánchez, Félix Sancenón, Elena Aznar, María D. Marcos, Paloma Martínez-Ruíz, Ramón Martínez-Máñez, and Reynaldo Villalonga. 2017. Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles. Chemistry - A European Journal 23 (18). Wiley: 4276 81. doi:10.1002/chem.201700603, which has been published in final form at https://doi.org/10.1002/chem.201700603. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." | es_ES |
dc.description.abstract | [EN] This work reports a new gated nanodevice for acetylcholine-triggered cargo delivery. We prepared and characterized Janus Au-mesoporous silica nanoparticles functionalized with acetylcholinesterase on the Au face and with supramolecular b-cyclodextrin: benzimidazole inclusion complexes as caps on the mesoporous silica face. The nanodevice is able to selectively deliver the cargo in the presence of acetylcholine via enzyme-mediated acetylcholine hydrolysis, locally lowering the pH and opening the supramolecular gate. Given the key role played by ACh and its relation with Parkinson's disease and other nervous system diseases, we believe that these findings could help design new therapeutic strategies. | es_ES |
dc.description.sponsorship | A.L.L. is grateful to "La Caixa" Banking Foundation for his PhD fellowship. The authors are gratitude to the Spanish Government (MINECO Projects MAT2012-38429-C04-01, MAT2015-64139-C4-1, CTQ2014-58989-P and CTQ2015-71936-REDT) and the Generalitat Valencia (Project PROMETEOII/2014/047) for support. The Comunidad de Madrid (S2013/MIT-3029, Programme NANOAVANSENS) is also gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Chemistry - A European Journal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Acetylcholine | es_ES |
dc.subject | Controlled release | es_ES |
dc.subject | Mesoporous materials | es_ES |
dc.subject | Nanoparticles | es_ES |
dc.subject | Nanotechnology | es_ES |
dc.subject.classification | QUIMICA INORGANICA | es_ES |
dc.subject.classification | QUIMICA ANALITICA | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/chem.201700603 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CAM//S2013%2FMIT-3029/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-01/ES/DESARROLLO DE MATERIALES FUNCIONALIZADOS CON PUERTAS NANOSCOPICAS PARA APLICACIONES DE LIBERACION CONTROLADA Y SENSORES PARA LA DETECCION DE NITRATO AMONICO, SULFIDRICO Y CO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2014-58989-P/ES/BIONANORROBOTS QUIMICAMENTE PROGRAMADOS Y CONTROLADOS POR ENZIMAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2015-71936-REDT/ES/MODIFICACION QUIMICA DEL GRAFENO PARA NUEVAS PROPIEDADES Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic | es_ES |
dc.description.bibliographicCitation | Llopis-Lorente, A.; Díez, P.; De La Torre-Paredes, C.; Sanchez, A.; Sancenón Galarza, F.; Aznar, E.; Marcos Martínez, MD.... (2017). Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles. Chemistry - A European Journal. 23(18):4276-4281. https://doi.org/10.1002/chem.201700603 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/chem.201700603 | es_ES |
dc.description.upvformatpinicio | 4276 | es_ES |
dc.description.upvformatpfin | 4281 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 23 | es_ES |
dc.description.issue | 18 | es_ES |
dc.identifier.pmid | 28220973 | es_ES |
dc.relation.pasarela | S\338372 | es_ES |
dc.contributor.funder | Comunidad de Madrid | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fundació Bancària Caixa d'Estalvis i Pensions de Barcelona | es_ES |
dc.description.references | Gotti, C., & Clementi, F. (2004). Neuronal nicotinic receptors: from structure to pathology. Progress in Neurobiology, 74(6), 363-396. doi:10.1016/j.pneurobio.2004.09.006 | es_ES |
dc.description.references | Lindstrom, J. (1997). Nicotinic acetylcholine receptors in health and disease. Molecular Neurobiology, 15(2), 193-222. doi:10.1007/bf02740634 | es_ES |
dc.description.references | Descarries, L., Gisiger, V., & Steriade, M. (1997). Diffuse transmission by acetylcholine in the CNS. Progress in Neurobiology, 53(5), 603-625. doi:10.1016/s0301-0082(97)00050-6 | es_ES |
dc.description.references | Leblond, L., Beaufort, C., Delerue, F., & Durkin, T. P. (2002). Differential roles for nicotinic and muscarinic cholinergic receptors in sustained visuo-spatial attention? A study using a 5-arm maze protocol in mice. Behavioural Brain Research, 128(1), 91-102. doi:10.1016/s0166-4328(01)00306-0 | es_ES |
dc.description.references | Nelson, C., Burk, J., Bruno, J., & Sarter, M. (2002). Effects of acute and repeated systemic administration of ketamine on prefrontal acetylcholine release and sustained attention performance in rats. Psychopharmacology, 161(2), 168-179. doi:10.1007/s00213-002-1004-7 | es_ES |
dc.description.references | Hasselmo, M. E., & Bower, J. M. (1993). Acetylcholine and memory. Trends in Neurosciences, 16(6), 218-222. doi:10.1016/0166-2236(93)90159-j | es_ES |
dc.description.references | Pepeu, G. (2004). Changes in Acetylcholine Extracellular Levels During Cognitive Processes. Learning & Memory, 11(1), 21-27. doi:10.1101/lm.68104 | es_ES |
dc.description.references | Calabresi, P., Picconi, B., Parnetti, L., & Di Filippo, M. (2006). A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine–acetylcholine synaptic balance. The Lancet Neurology, 5(11), 974-983. doi:10.1016/s1474-4422(06)70600-7 | es_ES |
dc.description.references | Ehrenstein, G., Galdzicki, Z., & Lange, G. D. (1997). The choline-leakage hypothesis for the loss of acetylcholine in Alzheimer’s disease. Biophysical Journal, 73(3), 1276-1280. doi:10.1016/s0006-3495(97)78160-8 | es_ES |
dc.description.references | Reale, M., de Angelis, F., di Nicola, M., Capello, E., di Ioia, M., Luca, G., … Tata, A. (2012). Relation between Pro-inflammatory Cytokines and Acetylcholine Levels in Relapsing-Remitting Multiple Sclerosis Patients. International Journal of Molecular Sciences, 13(12), 12656-12664. doi:10.3390/ijms131012656 | es_ES |
dc.description.references | Brett, R. S., Schmidt, J. H., Cage, J. S., Schartel, S. A., & Poppers, P. J. (1987). Measurement of Acetylcholine Receptor Concentration in Skeletal Muscle from a Patient with Multiple Sclerosis and Resistance to Atracurium. Anesthesiology, 66(6), 837-838. doi:10.1097/00000542-198706000-00025 | es_ES |
dc.description.references | Picconi, B., Passino, E., Sgobio, C., Bonsi, P., Barone, I., Ghiglieri, V., … Calabresi, P. (2006). Plastic and behavioral abnormalities in experimental Huntington’s disease: A crucial role for cholinergic interneurons. Neurobiology of Disease, 22(1), 143-152. doi:10.1016/j.nbd.2005.10.009 | es_ES |
dc.description.references | Pisani, A., Bernardi, G., Ding, J., & Surmeier, D. J. (2007). Re-emergence of striatal cholinergic interneurons in movement disorders. Trends in Neurosciences, 30(10), 545-553. doi:10.1016/j.tins.2007.07.008 | es_ES |
dc.description.references | Aosaki, T., Miura, M., Suzuki, T., Nishimura, K., & Masuda, M. (2010). Acetylcholine-dopamine balance hypothesis in the striatum: An update. Geriatrics & Gerontology International, 10, S148-S157. doi:10.1111/j.1447-0594.2010.00588.x | es_ES |
dc.description.references | Connolly, B. S., & Lang, A. E. (2014). Pharmacological Treatment of Parkinson Disease. JAMA, 311(16), 1670. doi:10.1001/jama.2014.3654 | es_ES |
dc.description.references | Levodopa and the Progression of Parkinson’s Disease. (2004). New England Journal of Medicine, 351(24), 2498-2508. doi:10.1056/nejmoa033447 | es_ES |
dc.description.references | Jenner, P. (2002). Pharmacology of dopamine agonists in the treatment of Parkinson’s disease. Neurology, 58(Supplement 1), S1-S8. doi:10.1212/wnl.58.suppl_1.s1 | es_ES |
dc.description.references | Stocchi, F. (1998). Dopamine Agonists in Parkinson???s Disease. CNS Drugs, 10(3), 159-170. doi:10.2165/00023210-199810030-00001 | es_ES |
dc.description.references | Takahashi, S., Tohgi, H., Yonezawa, H., Obara, S., & Yamazaki, E. (1999). The effect of trihexyphenidyl, an anticholinergic agent, on regional cerebral blood flow and oxygen metabolism in patients with Parkinson’s disease. Journal of the Neurological Sciences, 167(1), 56-61. doi:10.1016/s0022-510x(99)00142-2 | es_ES |
dc.description.references | Olanow, C. W., Agid, Y., & Mizuno, Y. (2005). Reply: Levodopa in the treatment of Parkinson’s disease: Current controversies. Movement Disorders, 20(5), 643-644. doi:10.1002/mds.20426 | es_ES |
dc.description.references | Rascol, O., Payoux, P., Ory, F., Ferreira, J. J., Brefel-Courbon, C., & Montastruc, J.-L. (2003). Limitations of current Parkinson’s disease therapy. Annals of Neurology, 53(S3), S3-S15. doi:10.1002/ana.10513 | es_ES |
dc.description.references | M�ller, T., Hefter, H., Hueber, R., Jost, W., Leenders, K., Odin, P., & Schwarz, J. (2004). Is levodopa toxic? Journal of Neurology, 251(S6). doi:10.1007/s00415-004-1610-x | es_ES |
dc.description.references | Juliano, R. L., Sunnarborg, S., DeSimone, J., & Haroon, Z. (2011). Institutional Profile: The Carolina Center of Cancer Nanotechnology Excellence: past accomplishments and future perspectives. Nanomedicine, 6(1), 19-24. doi:10.2217/nnm.10.142 | es_ES |
dc.description.references | López, T., Esquivel, D., Mendoza-Díaz, G., Ortiz-Islas, E., González, R. D., & Novaro, O. (2015). L-DOPA stabilization on sol–gel silica to be used as neurological nanoreservoirs: Structural and spectroscopic studies. Materials Letters, 161, 160-163. doi:10.1016/j.matlet.2015.08.015 | es_ES |
dc.description.references | Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 | es_ES |
dc.description.references | Giret, S., Wong Chi Man, M., & Carcel, C. (2015). Mesoporous‐Silica‐Functionalized Nanoparticles for Drug Delivery. Chemistry – A European Journal, 21(40), 13850-13865. doi:10.1002/chem.201500578 | es_ES |
dc.description.references | Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporous Materials for Drug Delivery. Angewandte Chemie International Edition, 46(40), 7548-7558. doi:10.1002/anie.200604488 | es_ES |
dc.description.references | Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporöse Materialien für den Wirkstofftransport. Angewandte Chemie, 119(40), 7692-7703. doi:10.1002/ange.200604488 | es_ES |
dc.description.references | Kim, K. T., Meeuwissen, S. A., Nolte, R. J. M., & van Hest, J. C. M. (2010). Smart nanocontainers and nanoreactors. Nanoscale, 2(6), 844. doi:10.1039/b9nr00409b | es_ES |
dc.description.references | Bao, G., Mitragotri, S., & Tong, S. (2013). Multifunctional Nanoparticles for Drug Delivery and Molecular Imaging. Annual Review of Biomedical Engineering, 15(1), 253-282. doi:10.1146/annurev-bioeng-071812-152409 | es_ES |
dc.description.references | Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991-1003. doi:10.1038/nmat3776 | es_ES |
dc.description.references | Wu, S.-H., Hung, Y., & Mou, C.-Y. (2011). Mesoporous silica nanoparticles as nanocarriers. Chemical Communications, 47(36), 9972. doi:10.1039/c1cc11760b | es_ES |
dc.description.references | Tang, F., Li, L., & Chen, D. (2012). Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Advanced Materials, 24(12), 1504-1534. doi:10.1002/adma.201104763 | es_ES |
dc.description.references | Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g | es_ES |
dc.description.references | Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Accounts of Chemical Research, 46(3), 792-801. doi:10.1021/ar3000986 | es_ES |
dc.description.references | Zhao, Y., Vivero-Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S.-Y. (2010). Capped mesoporous silica nanoparticles as stimuli-responsive controlled release systems for intracellular drug/gene delivery. Expert Opinion on Drug Delivery, 7(9), 1013-1029. doi:10.1517/17425247.2010.498816 | es_ES |
dc.description.references | Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t | es_ES |
dc.description.references | Yang, Y.-W., Sun, Y.-L., & Song, N. (2014). Switchable Host–Guest Systems on Surfaces. Accounts of Chemical Research, 47(7), 1950-1960. doi:10.1021/ar500022f | es_ES |
dc.description.references | Popat, A., Hartono, S. B., Stahr, F., Liu, J., Qiao, S. Z., & Qing (Max) Lu, G. (2011). Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale, 3(7), 2801. doi:10.1039/c1nr10224a | es_ES |
dc.description.references | Guardado-Alvarez, T. M., Sudha Devi, L., Russell, M. M., Schwartz, B. J., & Zink, J. I. (2013). Activation of Snap-Top Capped Mesoporous Silica Nanocontainers Using Two Near-Infrared Photons. Journal of the American Chemical Society, 135(38), 14000-14003. doi:10.1021/ja407331n | es_ES |
dc.description.references | Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053 | es_ES |
dc.description.references | Yu, E., Galiana, I., Martínez-Máñez, R., Stroeve, P., Marcos, M. D., Aznar, E., … Amorós, P. (2015). Poly(N-isopropylacrylamide)-gated Fe3O4/SiO2 core shell nanoparticles with expanded mesoporous structures for the temperature triggered release of lysozyme. Colloids and Surfaces B: Biointerfaces, 135, 652-660. doi:10.1016/j.colsurfb.2015.06.048 | es_ES |
dc.description.references | Baeza, A., Guisasola, E., Ruiz-Hernández, E., & Vallet-Regí, M. (2012). Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles. Chemistry of Materials, 24(3), 517-524. doi:10.1021/cm203000u | es_ES |
dc.description.references | Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880 | es_ES |
dc.description.references | Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie, 121(32), 5998-6001. doi:10.1002/ange.200900880 | es_ES |
dc.description.references | Zhang, Z., Balogh, D., Wang, F., Sung, S. Y., Nechushtai, R., & Willner, I. (2013). Biocatalytic Release of an Anticancer Drug from Nucleic-Acids-Capped Mesoporous SiO2 Using DNA or Molecular Biomarkers as Triggering Stimuli. ACS Nano, 7(10), 8455-8468. doi:10.1021/nn403772j | es_ES |
dc.description.references | El Sayed, S., Giménez, C., Aznar, E., Martínez-Máñez, R., Sancenón, F., & Licchelli, M. (2015). Highly selective and sensitive detection of glutathione using mesoporous silica nanoparticles capped with disulfide-containing oligo(ethylene glycol) chains. Organic & Biomolecular Chemistry, 13(4), 1017-1021. doi:10.1039/c4ob02083a | es_ES |
dc.description.references | Bansal, A., & Zhang, Y. (2014). Photocontrolled Nanoparticle Delivery Systems for Biomedical Applications. Accounts of Chemical Research, 47(10), 3052-3060. doi:10.1021/ar500217w | es_ES |
dc.description.references | Ozalp, V. C., Eyidogan, F., & Oktem, H. A. (2011). Aptamer-Gated Nanoparticles for Smart Drug Delivery. Pharmaceuticals, 4(8), 1137-1157. doi:10.3390/ph4081137 | es_ES |
dc.description.references | De la Rica, R., Aili, D., & Stevens, M. M. (2012). Enzyme-responsive nanoparticles for drug release and diagnostics. Advanced Drug Delivery Reviews, 64(11), 967-978. doi:10.1016/j.addr.2012.01.002 | es_ES |
dc.description.references | Leung, K. C.-F., Chak, C.-P., Lo, C.-M., Wong, W.-Y., Xuan, S., & Cheng, C. H. K. (2009). pH-Controllable Supramolecular Systems. Chemistry - An Asian Journal, 4(3), 364-381. doi:10.1002/asia.200800320 | es_ES |
dc.description.references | Villalonga, R., Díez, P., Sánchez, A., Aznar, E., Martínez-Máñez, R., & Pingarrón, J. M. (2013). Enzyme-Controlled Sensing-Actuating Nanomachine Based on Janus Au-Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 19(24), 7889-7894. doi:10.1002/chem.201300723 | es_ES |
dc.description.references | Díez, P., Sánchez, A., Gamella, M., Martínez-Ruíz, P., Aznar, E., de la Torre, C., … Pingarrón, J. M. (2014). Toward the Design of Smart Delivery Systems Controlled by Integrated Enzyme-Based Biocomputing Ensembles. Journal of the American Chemical Society, 136(25), 9116-9123. doi:10.1021/ja503578b | es_ES |
dc.description.references | Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469 | es_ES |
dc.description.references | Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980 | es_ES |
dc.description.references | Ultimo, A., Giménez, C., Bartovsky, P., Aznar, E., Sancenón, F., Marcos, M. D., … Murguía, J. R. (2016). Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry - A European Journal, 22(5), 1582-1586. doi:10.1002/chem.201504629 | es_ES |
dc.description.references | Pascual, L., Baroja, I., Aznar, E., Sancenón, F., Marcos, M. D., Murguía, J. R., … Martínez-Máñez, R. (2015). Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chemical Communications, 51(8), 1414-1416. doi:10.1039/c4cc08306g | es_ES |
dc.description.references | Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Über den chemischen Informationsaustausch zwischen gesteuerten Nanopartikeln. Angewandte Chemie, 126(46), 12838-12843. doi:10.1002/ange.201405580 | es_ES |
dc.description.references | Meng, H., Xue, M., Xia, T., Zhao, Y.-L., Tamanoi, F., Stoddart, J. F., … Nel, A. E. (2010). Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. Journal of the American Chemical Society, 132(36), 12690-12697. doi:10.1021/ja104501a | es_ES |
dc.description.references | Xue, M., Zhong, X., Shaposhnik, Z., Qu, Y., Tamanoi, F., Duan, X., & Zink, J. I. (2011). pH-Operated Mechanized Porous Silicon Nanoparticles. Journal of the American Chemical Society, 133(23), 8798-8801. doi:10.1021/ja201252e | es_ES |
dc.description.references | Wang, T., Wang, M., Ding, C., & Fu, J. (2014). Mono-benzimidazole functionalized β-cyclodextrins as supramolecular nanovalves for pH-triggered release of p-coumaric acid. Chem. Commun., 50(83), 12469-12472. doi:10.1039/c4cc05677a | es_ES |
dc.description.references | Angelos, S., Khashab, N. M., Yang, Y.-W., Trabolsi, A., Khatib, H. A., Stoddart, J. F., & Zink, J. I. (2009). pH Clock-Operated Mechanized Nanoparticles. Journal of the American Chemical Society, 131(36), 12912-12914. doi:10.1021/ja9010157 | es_ES |
dc.description.references | Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55. doi:10.1039/df9511100055 | es_ES |
dc.description.references | Gómez, L., Ramírez, H. L., Villalonga, M. L., Hernández, J., & Villalonga, R. (2006). Immobilization of chitosan-modified invertase on alginate-coated chitin support via polyelectrolyte complex formation. Enzyme and Microbial Technology, 38(1-2), 22-27. doi:10.1016/j.enzmictec.2004.10.008 | es_ES |
dc.description.references | Chico, B., Camacho, C., Pérez, M., Longo, M. A., Sanromán, M. A., Pingarrón, J. M., & Villalonga, R. (2009). Polyelectrostatic immobilization of gold nanoparticles-modified peroxidase on alginate-coated gold electrode for mediatorless biosensor construction. Journal of Electroanalytical Chemistry, 629(1-2), 126-132. doi:10.1016/j.jelechem.2009.02.004 | es_ES |
dc.description.references | Sánchez, A., Díez, P., Martínez-Ruíz, P., Villalonga, R., & Pingarrón, J. M. (2013). Janus Au-mesoporous silica nanoparticles as electrochemical biorecognition-signaling system. Electrochemistry Communications, 30, 51-54. doi:10.1016/j.elecom.2013.02.008 | es_ES |
dc.description.references | Jerez, G., Kaufman, G., Prystai, M., Schenkeveld, S., & Donkor, K. K. (2009). Determination of thermodynamic pKavalues of benzimidazole and benzimidazole derivatives by capillary electrophoresis. Journal of Separation Science, 32(7), 1087-1095. doi:10.1002/jssc.200800482 | es_ES |
dc.description.references | Lin, S., Liu, C.-C., & Chou, T.-C. (2004). Amperometric acetylcholine sensor catalyzed by nickel anode electrode. Biosensors and Bioelectronics, 20(1), 9-14. doi:10.1016/j.bios.2004.01.018 | es_ES |
dc.description.references | Vizi, E., Fekete, A., Karoly, R., & Mike, A. (2010). Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. British Journal of Pharmacology, 160(4), 785-809. doi:10.1111/j.1476-5381.2009.00624.x | es_ES |
dc.description.references | Schena, A., & Johnsson, K. (2013). Sensing Acetylcholine and Anticholinesterase Compounds. Angewandte Chemie International Edition, 53(5), 1302-1305. doi:10.1002/anie.201307754 | es_ES |
dc.description.references | Schena, A., & Johnsson, K. (2014). Sensing Acetylcholine and Anticholinesterase Compounds. Angewandte Chemie, 126(5), 1326-1329. doi:10.1002/ange.201307754 | es_ES |
dc.description.references | Zhou, Y., Tan, L.-L., Li, Q.-L., Qiu, X.-L., Qi, A.-D., Tao, Y., & Yang, Y.-W. (2014). Acetylcholine-Triggered Cargo Release from Supramolecular Nanovalves Based on Different Macrocyclic Receptors. Chemistry - A European Journal, 20(11), 2998-3004. doi:10.1002/chem.201304864 | es_ES |
dc.description.references | Hassler, R., Haug, P., Nitsch, C., Kim, J. S., & Paik, K. (1982). Effect of Motor and Premotor Cortex Ablation on Concentrations of Amino Acids, Monoamines, and Acetylcholine and on the Ultrastructure in Rat Striatum. A Confirmation of Glutamate as the Specific Cortico-Striatal Transmitter. Journal of Neurochemistry, 38(4), 1087-1098. doi:10.1111/j.1471-4159.1982.tb05352.x | es_ES |
dc.description.references | SETHY, V. H., & WOERT, M. H. V. (1974). Regulation of striatal acetylcholine concentration by dopamine receptors. Nature, 251(5475), 529-530. doi:10.1038/251529a0 | es_ES |
dc.description.references | Batool, Z., Sadir, S., Liaquat, L., Tabassum, S., Madiha, S., Rafiq, S., … Haider, S. (2016). Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia. Brain Research Bulletin, 120, 63-74. doi:10.1016/j.brainresbull.2015.11.001 | es_ES |