- -

Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles

Mostrar el registro completo del ítem

Llopis-Lorente, A.; Díez, P.; De La Torre-Paredes, C.; Sanchez, A.; Sancenón Galarza, F.; Aznar, E.; Marcos Martínez, MD.... (2017). Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles. Chemistry - A European Journal. 23(18):4276-4281. https://doi.org/10.1002/chem.201700603

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148460

Ficheros en el ítem

Metadatos del ítem

Título: Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles
Autor: Llopis-Lorente, Antoni Díez, Paula De La Torre-Paredes, Cristina Sanchez, Alfredo Sancenón Galarza, Félix Aznar, Elena Marcos Martínez, María Dolores Martínez-Ruíz, Paloma Martínez-Máñez, Ramón Villalonga, Reynaldo
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic
Fecha difusión:
Resumen:
[EN] This work reports a new gated nanodevice for acetylcholine-triggered cargo delivery. We prepared and characterized Janus Au-mesoporous silica nanoparticles functionalized with acetylcholinesterase on the Au face and ...[+]
Palabras clave: Acetylcholine , Controlled release , Mesoporous materials , Nanoparticles , Nanotechnology
Derechos de uso: Reserva de todos los derechos
Fuente:
Chemistry - A European Journal. (issn: 0947-6539 )
DOI: 10.1002/chem.201700603
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/chem.201700603
Código del Proyecto:
info:eu-repo/grantAgreement/CAM//S2013%2FMIT-3029/
...[+]
info:eu-repo/grantAgreement/CAM//S2013%2FMIT-3029/
info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/
info:eu-repo/grantAgreement/MINECO//MAT2012-38429-C04-01/ES/DESARROLLO DE MATERIALES FUNCIONALIZADOS CON PUERTAS NANOSCOPICAS PARA APLICACIONES DE LIBERACION CONTROLADA Y SENSORES PARA LA DETECCION DE NITRATO AMONICO, SULFIDRICO Y CO/
info:eu-repo/grantAgreement/MINECO//CTQ2014-58989-P/ES/BIONANORROBOTS QUIMICAMENTE PROGRAMADOS Y CONTROLADOS POR ENZIMAS/
info:eu-repo/grantAgreement/MINECO//CTQ2015-71936-REDT/ES/MODIFICACION QUIMICA DEL GRAFENO PARA NUEVAS PROPIEDADES Y APLICACIONES/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/
[-]
Descripción: "This is the peer reviewed version of the following article: Llopis-Lorente, Antoni, Paula Díez, Cristina de la Torre, Alfredo Sánchez, Félix Sancenón, Elena Aznar, María D. Marcos, Paloma Martínez-Ruíz, Ramón Martínez-Máñez, and Reynaldo Villalonga. 2017. Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles. Chemistry - A European Journal 23 (18). Wiley: 4276 81. doi:10.1002/chem.201700603, which has been published in final form at https://doi.org/10.1002/chem.201700603. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Agradecimientos:
A.L.L. is grateful to "La Caixa" Banking Foundation for his PhD fellowship. The authors are gratitude to the Spanish Government (MINECO Projects MAT2012-38429-C04-01, MAT2015-64139-C4-1, CTQ2014-58989-P and CTQ2015-71936-REDT) ...[+]
Tipo: Artículo

References

Gotti, C., & Clementi, F. (2004). Neuronal nicotinic receptors: from structure to pathology. Progress in Neurobiology, 74(6), 363-396. doi:10.1016/j.pneurobio.2004.09.006

Lindstrom, J. (1997). Nicotinic acetylcholine receptors in health and disease. Molecular Neurobiology, 15(2), 193-222. doi:10.1007/bf02740634

Descarries, L., Gisiger, V., & Steriade, M. (1997). Diffuse transmission by acetylcholine in the CNS. Progress in Neurobiology, 53(5), 603-625. doi:10.1016/s0301-0082(97)00050-6 [+]
Gotti, C., & Clementi, F. (2004). Neuronal nicotinic receptors: from structure to pathology. Progress in Neurobiology, 74(6), 363-396. doi:10.1016/j.pneurobio.2004.09.006

Lindstrom, J. (1997). Nicotinic acetylcholine receptors in health and disease. Molecular Neurobiology, 15(2), 193-222. doi:10.1007/bf02740634

Descarries, L., Gisiger, V., & Steriade, M. (1997). Diffuse transmission by acetylcholine in the CNS. Progress in Neurobiology, 53(5), 603-625. doi:10.1016/s0301-0082(97)00050-6

Leblond, L., Beaufort, C., Delerue, F., & Durkin, T. P. (2002). Differential roles for nicotinic and muscarinic cholinergic receptors in sustained visuo-spatial attention? A study using a 5-arm maze protocol in mice. Behavioural Brain Research, 128(1), 91-102. doi:10.1016/s0166-4328(01)00306-0

Nelson, C., Burk, J., Bruno, J., & Sarter, M. (2002). Effects of acute and repeated systemic administration of ketamine on prefrontal acetylcholine release and sustained attention performance in rats. Psychopharmacology, 161(2), 168-179. doi:10.1007/s00213-002-1004-7

Hasselmo, M. E., & Bower, J. M. (1993). Acetylcholine and memory. Trends in Neurosciences, 16(6), 218-222. doi:10.1016/0166-2236(93)90159-j

Pepeu, G. (2004). Changes in Acetylcholine Extracellular Levels During Cognitive Processes. Learning & Memory, 11(1), 21-27. doi:10.1101/lm.68104

Calabresi, P., Picconi, B., Parnetti, L., & Di Filippo, M. (2006). A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine–acetylcholine synaptic balance. The Lancet Neurology, 5(11), 974-983. doi:10.1016/s1474-4422(06)70600-7

Ehrenstein, G., Galdzicki, Z., & Lange, G. D. (1997). The choline-leakage hypothesis for the loss of acetylcholine in Alzheimer’s disease. Biophysical Journal, 73(3), 1276-1280. doi:10.1016/s0006-3495(97)78160-8

Reale, M., de Angelis, F., di Nicola, M., Capello, E., di Ioia, M., Luca, G., … Tata, A. (2012). Relation between Pro-inflammatory Cytokines and Acetylcholine Levels in Relapsing-Remitting Multiple Sclerosis Patients. International Journal of Molecular Sciences, 13(12), 12656-12664. doi:10.3390/ijms131012656

Brett, R. S., Schmidt, J. H., Cage, J. S., Schartel, S. A., & Poppers, P. J. (1987). Measurement of Acetylcholine Receptor Concentration in Skeletal Muscle from a Patient with Multiple Sclerosis and Resistance to Atracurium. Anesthesiology, 66(6), 837-838. doi:10.1097/00000542-198706000-00025

Picconi, B., Passino, E., Sgobio, C., Bonsi, P., Barone, I., Ghiglieri, V., … Calabresi, P. (2006). Plastic and behavioral abnormalities in experimental Huntington’s disease: A crucial role for cholinergic interneurons. Neurobiology of Disease, 22(1), 143-152. doi:10.1016/j.nbd.2005.10.009

Pisani, A., Bernardi, G., Ding, J., & Surmeier, D. J. (2007). Re-emergence of striatal cholinergic interneurons in movement disorders. Trends in Neurosciences, 30(10), 545-553. doi:10.1016/j.tins.2007.07.008

Aosaki, T., Miura, M., Suzuki, T., Nishimura, K., & Masuda, M. (2010). Acetylcholine-dopamine balance hypothesis in the striatum: An update. Geriatrics & Gerontology International, 10, S148-S157. doi:10.1111/j.1447-0594.2010.00588.x

Connolly, B. S., & Lang, A. E. (2014). Pharmacological Treatment of Parkinson Disease. JAMA, 311(16), 1670. doi:10.1001/jama.2014.3654

Levodopa and the Progression of Parkinson’s Disease. (2004). New England Journal of Medicine, 351(24), 2498-2508. doi:10.1056/nejmoa033447

Jenner, P. (2002). Pharmacology of dopamine agonists in the treatment of Parkinson’s disease. Neurology, 58(Supplement 1), S1-S8. doi:10.1212/wnl.58.suppl_1.s1

Stocchi, F. (1998). Dopamine Agonists in Parkinson???s Disease. CNS Drugs, 10(3), 159-170. doi:10.2165/00023210-199810030-00001

Takahashi, S., Tohgi, H., Yonezawa, H., Obara, S., & Yamazaki, E. (1999). The effect of trihexyphenidyl, an anticholinergic agent, on regional cerebral blood flow and oxygen metabolism in patients with Parkinson’s disease. Journal of the Neurological Sciences, 167(1), 56-61. doi:10.1016/s0022-510x(99)00142-2

Olanow, C. W., Agid, Y., & Mizuno, Y. (2005). Reply: Levodopa in the treatment of Parkinson’s disease: Current controversies. Movement Disorders, 20(5), 643-644. doi:10.1002/mds.20426

Rascol, O., Payoux, P., Ory, F., Ferreira, J. J., Brefel-Courbon, C., & Montastruc, J.-L. (2003). Limitations of current Parkinson’s disease therapy. Annals of Neurology, 53(S3), S3-S15. doi:10.1002/ana.10513

M�ller, T., Hefter, H., Hueber, R., Jost, W., Leenders, K., Odin, P., & Schwarz, J. (2004). Is levodopa toxic? Journal of Neurology, 251(S6). doi:10.1007/s00415-004-1610-x

Juliano, R. L., Sunnarborg, S., DeSimone, J., & Haroon, Z. (2011). Institutional Profile: The Carolina Center of Cancer Nanotechnology Excellence: past accomplishments and future perspectives. Nanomedicine, 6(1), 19-24. doi:10.2217/nnm.10.142

López, T., Esquivel, D., Mendoza-Díaz, G., Ortiz-Islas, E., González, R. D., & Novaro, O. (2015). L-DOPA stabilization on sol–gel silica to be used as neurological nanoreservoirs: Structural and spectroscopic studies. Materials Letters, 161, 160-163. doi:10.1016/j.matlet.2015.08.015

Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

Giret, S., Wong Chi Man, M., & Carcel, C. (2015). Mesoporous‐Silica‐Functionalized Nanoparticles for Drug Delivery. Chemistry – A European Journal, 21(40), 13850-13865. doi:10.1002/chem.201500578

Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporous Materials for Drug Delivery. Angewandte Chemie International Edition, 46(40), 7548-7558. doi:10.1002/anie.200604488

Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporöse Materialien für den Wirkstofftransport. Angewandte Chemie, 119(40), 7692-7703. doi:10.1002/ange.200604488

Kim, K. T., Meeuwissen, S. A., Nolte, R. J. M., & van Hest, J. C. M. (2010). Smart nanocontainers and nanoreactors. Nanoscale, 2(6), 844. doi:10.1039/b9nr00409b

Bao, G., Mitragotri, S., & Tong, S. (2013). Multifunctional Nanoparticles for Drug Delivery and Molecular Imaging. Annual Review of Biomedical Engineering, 15(1), 253-282. doi:10.1146/annurev-bioeng-071812-152409

Mura, S., Nicolas, J., & Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991-1003. doi:10.1038/nmat3776

Wu, S.-H., Hung, Y., & Mou, C.-Y. (2011). Mesoporous silica nanoparticles as nanocarriers. Chemical Communications, 47(36), 9972. doi:10.1039/c1cc11760b

Tang, F., Li, L., & Chen, D. (2012). Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Advanced Materials, 24(12), 1504-1534. doi:10.1002/adma.201104763

Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590. doi:10.1039/c1cs15246g

Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I., & Brinker, C. J. (2013). Mesoporous Silica Nanoparticle Nanocarriers: Biofunctionality and Biocompatibility. Accounts of Chemical Research, 46(3), 792-801. doi:10.1021/ar3000986

Zhao, Y., Vivero-Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S.-Y. (2010). Capped mesoporous silica nanoparticles as stimuli-responsive controlled release systems for intracellular drug/gene delivery. Expert Opinion on Drug Delivery, 7(9), 1013-1029. doi:10.1517/17425247.2010.498816

Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t

Yang, Y.-W., Sun, Y.-L., & Song, N. (2014). Switchable Host–Guest Systems on Surfaces. Accounts of Chemical Research, 47(7), 1950-1960. doi:10.1021/ar500022f

Popat, A., Hartono, S. B., Stahr, F., Liu, J., Qiao, S. Z., & Qing (Max) Lu, G. (2011). Mesoporous silica nanoparticles for bioadsorption, enzyme immobilisation, and delivery carriers. Nanoscale, 3(7), 2801. doi:10.1039/c1nr10224a

Guardado-Alvarez, T. M., Sudha Devi, L., Russell, M. M., Schwartz, B. J., & Zink, J. I. (2013). Activation of Snap-Top Capped Mesoporous Silica Nanocontainers Using Two Near-Infrared Photons. Journal of the American Chemical Society, 135(38), 14000-14003. doi:10.1021/ja407331n

Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053

Yu, E., Galiana, I., Martínez-Máñez, R., Stroeve, P., Marcos, M. D., Aznar, E., … Amorós, P. (2015). Poly(N-isopropylacrylamide)-gated Fe3O4/SiO2 core shell nanoparticles with expanded mesoporous structures for the temperature triggered release of lysozyme. Colloids and Surfaces B: Biointerfaces, 135, 652-660. doi:10.1016/j.colsurfb.2015.06.048

Baeza, A., Guisasola, E., Ruiz-Hernández, E., & Vallet-Regí, M. (2012). Magnetically Triggered Multidrug Release by Hybrid Mesoporous Silica Nanoparticles. Chemistry of Materials, 24(3), 517-524. doi:10.1021/cm203000u

Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880

Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie, 121(32), 5998-6001. doi:10.1002/ange.200900880

Zhang, Z., Balogh, D., Wang, F., Sung, S. Y., Nechushtai, R., & Willner, I. (2013). Biocatalytic Release of an Anticancer Drug from Nucleic-Acids-Capped Mesoporous SiO2 Using DNA or Molecular Biomarkers as Triggering Stimuli. ACS Nano, 7(10), 8455-8468. doi:10.1021/nn403772j

El Sayed, S., Giménez, C., Aznar, E., Martínez-Máñez, R., Sancenón, F., & Licchelli, M. (2015). Highly selective and sensitive detection of glutathione using mesoporous silica nanoparticles capped with disulfide-containing oligo(ethylene glycol) chains. Organic & Biomolecular Chemistry, 13(4), 1017-1021. doi:10.1039/c4ob02083a

Bansal, A., & Zhang, Y. (2014). Photocontrolled Nanoparticle Delivery Systems for Biomedical Applications. Accounts of Chemical Research, 47(10), 3052-3060. doi:10.1021/ar500217w

Ozalp, V. C., Eyidogan, F., & Oktem, H. A. (2011). Aptamer-Gated Nanoparticles for Smart Drug Delivery. Pharmaceuticals, 4(8), 1137-1157. doi:10.3390/ph4081137

De la Rica, R., Aili, D., & Stevens, M. M. (2012). Enzyme-responsive nanoparticles for drug release and diagnostics. Advanced Drug Delivery Reviews, 64(11), 967-978. doi:10.1016/j.addr.2012.01.002

Leung, K. C.-F., Chak, C.-P., Lo, C.-M., Wong, W.-Y., Xuan, S., & Cheng, C. H. K. (2009). pH-Controllable Supramolecular Systems. Chemistry - An Asian Journal, 4(3), 364-381. doi:10.1002/asia.200800320

Villalonga, R., Díez, P., Sánchez, A., Aznar, E., Martínez-Máñez, R., & Pingarrón, J. M. (2013). Enzyme-Controlled Sensing-Actuating Nanomachine Based on Janus Au-Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 19(24), 7889-7894. doi:10.1002/chem.201300723

Díez, P., Sánchez, A., Gamella, M., Martínez-Ruíz, P., Aznar, E., de la Torre, C., … Pingarrón, J. M. (2014). Toward the Design of Smart Delivery Systems Controlled by Integrated Enzyme-Based Biocomputing Ensembles. Journal of the American Chemical Society, 136(25), 9116-9123. doi:10.1021/ja503578b

Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469

Aznar, E., Martínez-Máñez, R., & Sancenón, F. (2009). Controlled release using mesoporous materials containing gate-like scaffoldings. Expert Opinion on Drug Delivery, 6(6), 643-655. doi:10.1517/17425240902895980

Ultimo, A., Giménez, C., Bartovsky, P., Aznar, E., Sancenón, F., Marcos, M. D., … Murguía, J. R. (2016). Targeting Innate Immunity with dsRNA-Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry - A European Journal, 22(5), 1582-1586. doi:10.1002/chem.201504629

Pascual, L., Baroja, I., Aznar, E., Sancenón, F., Marcos, M. D., Murguía, J. R., … Martínez-Máñez, R. (2015). Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chemical Communications, 51(8), 1414-1416. doi:10.1039/c4cc08306g

Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Über den chemischen Informationsaustausch zwischen gesteuerten Nanopartikeln. Angewandte Chemie, 126(46), 12838-12843. doi:10.1002/ange.201405580

Meng, H., Xue, M., Xia, T., Zhao, Y.-L., Tamanoi, F., Stoddart, J. F., … Nel, A. E. (2010). Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. Journal of the American Chemical Society, 132(36), 12690-12697. doi:10.1021/ja104501a

Xue, M., Zhong, X., Shaposhnik, Z., Qu, Y., Tamanoi, F., Duan, X., & Zink, J. I. (2011). pH-Operated Mechanized Porous Silicon Nanoparticles. Journal of the American Chemical Society, 133(23), 8798-8801. doi:10.1021/ja201252e

Wang, T., Wang, M., Ding, C., & Fu, J. (2014). Mono-benzimidazole functionalized β-cyclodextrins as supramolecular nanovalves for pH-triggered release of p-coumaric acid. Chem. Commun., 50(83), 12469-12472. doi:10.1039/c4cc05677a

Angelos, S., Khashab, N. M., Yang, Y.-W., Trabolsi, A., Khatib, H. A., Stoddart, J. F., & Zink, J. I. (2009). pH Clock-Operated Mechanized Nanoparticles. Journal of the American Chemical Society, 131(36), 12912-12914. doi:10.1021/ja9010157

Turkevich, J., Stevenson, P. C., & Hillier, J. (1951). A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society, 11, 55. doi:10.1039/df9511100055

Gómez, L., Ramírez, H. L., Villalonga, M. L., Hernández, J., & Villalonga, R. (2006). Immobilization of chitosan-modified invertase on alginate-coated chitin support via polyelectrolyte complex formation. Enzyme and Microbial Technology, 38(1-2), 22-27. doi:10.1016/j.enzmictec.2004.10.008

Chico, B., Camacho, C., Pérez, M., Longo, M. A., Sanromán, M. A., Pingarrón, J. M., & Villalonga, R. (2009). Polyelectrostatic immobilization of gold nanoparticles-modified peroxidase on alginate-coated gold electrode for mediatorless biosensor construction. Journal of Electroanalytical Chemistry, 629(1-2), 126-132. doi:10.1016/j.jelechem.2009.02.004

Sánchez, A., Díez, P., Martínez-Ruíz, P., Villalonga, R., & Pingarrón, J. M. (2013). Janus Au-mesoporous silica nanoparticles as electrochemical biorecognition-signaling system. Electrochemistry Communications, 30, 51-54. doi:10.1016/j.elecom.2013.02.008

Jerez, G., Kaufman, G., Prystai, M., Schenkeveld, S., & Donkor, K. K. (2009). Determination of thermodynamic pKavalues of benzimidazole and benzimidazole derivatives by capillary electrophoresis. Journal of Separation Science, 32(7), 1087-1095. doi:10.1002/jssc.200800482

Lin, S., Liu, C.-C., & Chou, T.-C. (2004). Amperometric acetylcholine sensor catalyzed by nickel anode electrode. Biosensors and Bioelectronics, 20(1), 9-14. doi:10.1016/j.bios.2004.01.018

Vizi, E., Fekete, A., Karoly, R., & Mike, A. (2010). Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. British Journal of Pharmacology, 160(4), 785-809. doi:10.1111/j.1476-5381.2009.00624.x

Schena, A., & Johnsson, K. (2013). Sensing Acetylcholine and Anticholinesterase Compounds. Angewandte Chemie International Edition, 53(5), 1302-1305. doi:10.1002/anie.201307754

Schena, A., & Johnsson, K. (2014). Sensing Acetylcholine and Anticholinesterase Compounds. Angewandte Chemie, 126(5), 1326-1329. doi:10.1002/ange.201307754

Zhou, Y., Tan, L.-L., Li, Q.-L., Qiu, X.-L., Qi, A.-D., Tao, Y., & Yang, Y.-W. (2014). Acetylcholine-Triggered Cargo Release from Supramolecular Nanovalves Based on Different Macrocyclic Receptors. Chemistry - A European Journal, 20(11), 2998-3004. doi:10.1002/chem.201304864

Hassler, R., Haug, P., Nitsch, C., Kim, J. S., & Paik, K. (1982). Effect of Motor and Premotor Cortex Ablation on Concentrations of Amino Acids, Monoamines, and Acetylcholine and on the Ultrastructure in Rat Striatum. A Confirmation of Glutamate as the Specific Cortico-Striatal Transmitter. Journal of Neurochemistry, 38(4), 1087-1098. doi:10.1111/j.1471-4159.1982.tb05352.x

SETHY, V. H., & WOERT, M. H. V. (1974). Regulation of striatal acetylcholine concentration by dopamine receptors. Nature, 251(5475), 529-530. doi:10.1038/251529a0

Batool, Z., Sadir, S., Liaquat, L., Tabassum, S., Madiha, S., Rafiq, S., … Haider, S. (2016). Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia. Brain Research Bulletin, 120, 63-74. doi:10.1016/j.brainresbull.2015.11.001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem