- -

Combination of poly(lactic) acid (PLA) and starch to obtain biodegradable materials for food packaging

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Combination of poly(lactic) acid (PLA) and starch to obtain biodegradable materials for food packaging

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muller, Justine es_ES
dc.contributor.author González Martínez, María Consuelo es_ES
dc.contributor.author Chiralt, A. es_ES
dc.date.accessioned 2020-07-25T03:31:11Z
dc.date.available 2020-07-25T03:31:11Z
dc.date.issued 2017-08-15 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148679
dc.description.abstract [EN] The massive use of synthetic plastics, in particular in the food packaging area, has a great environmental impact, and alternative more ecologic materials are being required. Poly(lactic) acid (PLA) and starch have been extensively studied as potential replacements for non-degradable petrochemical polymers on the basis of their availability, adequate food contact properties and competitive cost. Nevertheless, both polymers exhibit some drawbacks for packaging uses and need to be adapted to the food packaging requirements. Starch, in particular, is very water sensitive and its film properties are heavily dependent on the moisture content, exhibiting relatively low mechanical resistance. PLA films are very brittle and offer low resistance to oxygen permeation. Their combination as blend or multilayer films could provide properties that are more adequate for packaging purposes on the basis of their complementary characteristics. The main characteristics of PLA and starch in terms of not only the barrier and mechanical properties of their films but also of their combinations, by using blending or multilayer strategies, have been analysed, identifying components or processes that favour the polymer compatibility and the good performance of the combined materials. The properties of some blends/combinations have been discussed in comparison with those of pure polymer films. es_ES
dc.description.sponsorship The authors thank the Ministerio de Economía y Competitividad (Spain) for the financial support provided through Project AGL2013-42989-R and AGL2016-76699-R. Author Justine Muller thanks the Generalitat Valènciana for the Santiago Grisolía Grant (GRISOLIA/2014/003). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Poly(lactic) acid es_ES
dc.subject Starch es_ES
dc.subject Films es_ES
dc.subject Blends es_ES
dc.subject Multilayer es_ES
dc.subject Food packaging es_ES
dc.subject Mechanical properties es_ES
dc.subject Barrier properties es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Combination of poly(lactic) acid (PLA) and starch to obtain biodegradable materials for food packaging es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma10080952 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2014%2F003/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2013-42989-R/ES/NUEVOS MATERIALES BIODEGRADABLES MULTICAPA PARA ENVASADO ACTIVO DE ALIMENTOS SENSIBLES AL DETERIORO MICROBIANO Y%2FO OXIDATIVO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Muller, J.; González Martínez, MC.; Chiralt, A. (2017). Combination of poly(lactic) acid (PLA) and starch to obtain biodegradable materials for food packaging. Materials. 10(8):1-22. https://doi.org/10.3390/ma10080952 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ma10080952 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 1996-1944 es_ES
dc.identifier.pmid 28809808 es_ES
dc.identifier.pmcid PMC5578318 es_ES
dc.relation.pasarela S\352165 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Plastic Europe—Association of Plastics Manufacturers, Plastic—The Facts 2016http://www.plasticseurope.org/Document/plastics---the-facts-2016-15787.aspx?FolID=2 es_ES
dc.description.references Food Packaging Forum—Food Packaging Health, Food Packaging Materialshttp://www.foodpackagingforum.org/food-packaging-health/food-packaging-materials es_ES
dc.description.references Dossier—Bioplastics as Food Contact Materialshttp://www.foodpackagingforum.org/fpf-2016/wp-content/uploads/2015/11/FPF_Dossier06_Bioplastics.pdf es_ES
dc.description.references Armentano, I., Bitinis, N., Fortunati, E., Mattioli, S., Rescignano, N., Verdejo, R., … Kenny, J. M. (2013). Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science, 38(10-11), 1720-1747. doi:10.1016/j.progpolymsci.2013.05.010 es_ES
dc.description.references Auras, R., Harte, B., & Selke, S. (2004). An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience, 4(9), 835-864. doi:10.1002/mabi.200400043 es_ES
dc.description.references Mattioli, S., Peltzer, M., Fortunati, E., Armentano, I., Jiménez, A., & Kenny, J. M. (2013). Structure, gas-barrier properties and overall migration of poly(lactic acid) films coated with hydrogenated amorphous carbon layers. Carbon, 63, 274-282. doi:10.1016/j.carbon.2013.06.080 es_ES
dc.description.references Rhim, J.-W., Hong, S.-I., & Ha, C.-S. (2009). Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT - Food Science and Technology, 42(2), 612-617. doi:10.1016/j.lwt.2008.02.015 es_ES
dc.description.references Fortunati, E., Aluigi, A., Armentano, I., Morena, F., Emiliani, C., Martino, S., … Puglia, D. (2015). Keratins extracted from Merino wool and Brown Alpaca fibres: Thermal, mechanical and biological properties of PLLA based biocomposites. Materials Science and Engineering: C, 47, 394-406. doi:10.1016/j.msec.2014.11.007 es_ES
dc.description.references Gui, Z., Xu, Y., Gao, Y., Lu, C., & Cheng, S. (2012). Novel polyethylene glycol-based polyester-toughened polylactide. Materials Letters, 71, 63-65. doi:10.1016/j.matlet.2011.12.045 es_ES
dc.description.references Rasal, R. M., Janorkar, A. V., & Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356. doi:10.1016/j.progpolymsci.2009.12.003 es_ES
dc.description.references Hiljanen-Vainio, M., Varpomaa, P., Seppälä, J., & Törmälä, P. (1996). Modification of poly(L-lactides) by blending: mechanical and hydrolytic behavior. Macromolecular Chemistry and Physics, 197(4), 1503-1523. doi:10.1002/macp.1996.021970427 es_ES
dc.description.references Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. doi:10.1016/j.progpolymsci.2008.05.004 es_ES
dc.description.references González, A., & Alvarez Igarzabal, C. I. (2013). Soy protein – Poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocolloids, 33(2), 289-296. doi:10.1016/j.foodhyd.2013.03.010 es_ES
dc.description.references Jamshidian, M., Tehrany, E. A., & Desobry, S. (2012). Antioxidants Release from Solvent-Cast PLA Film: Investigation of PLA Antioxidant-Active Packaging. Food and Bioprocess Technology, 6(6), 1450-1463. doi:10.1007/s11947-012-0830-9 es_ES
dc.description.references Qin, Y., Yang, J., & Xue, J. (2014). Characterization of antimicrobial poly(lactic acid)/poly(trimethylene carbonate) films with cinnamaldehyde. Journal of Materials Science, 50(3), 1150-1158. doi:10.1007/s10853-014-8671-8 es_ES
dc.description.references Ahmed, J., Hiremath, N., & Jacob, H. (2016). Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to InhibitStaphylococcus aureusandCampylobacter jejuni. Journal of Food Science, 81(2), E419-E429. doi:10.1111/1750-3841.13193 es_ES
dc.description.references Hughes, J., Thomas, R., Byun, Y., & Whiteside, S. (2012). Improved flexibility of thermally stable poly-lactic acid (PLA). Carbohydrate Polymers, 88(1), 165-172. doi:10.1016/j.carbpol.2011.11.078 es_ES
dc.description.references Özge Erdohan, Z., Çam, B., & Turhan, K. N. (2013). Characterization of antimicrobial polylactic acid based films. Journal of Food Engineering, 119(2), 308-315. doi:10.1016/j.jfoodeng.2013.05.043 es_ES
dc.description.references Baiardo, M., Frisoni, G., Scandola, M., Rimelen, M., Lips, D., Ruffieux, K., & Wintermantel, E. (2003). Thermal and mechanical properties of plasticized poly(L-lactic acid). Journal of Applied Polymer Science, 90(7), 1731-1738. doi:10.1002/app.12549 es_ES
dc.description.references Coltelli, M.-B., Maggiore, I. D., Bertoldo, M., Signori, F., Bronco, S., & Ciardelli, F. (2008). Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization. Journal of Applied Polymer Science, 110(2), 1250-1262. doi:10.1002/app.28512 es_ES
dc.description.references Ljungberg, N., & Wesslén, B. (2002). The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). Journal of Applied Polymer Science, 86(5), 1227-1234. doi:10.1002/app.11077 es_ES
dc.description.references Tee, Y. B., Talib, R. A., Abdan, K., Chin, N. L., Basha, R. K., & Yunos, K. F. M. (2014). Toughening Poly(Lactic Acid) and Aiding the Melt-compounding with Bio-sourced Plasticizers. Agriculture and Agricultural Science Procedia, 2, 289-295. doi:10.1016/j.aaspro.2014.11.041 es_ES
dc.description.references Chieng, B. W., Ibrahim, N. A., Wan Yunus, W. M. Z., & Zobir Hussein, M. (2013). Plasticized poly(lactic acid) with low molecular weight poly(ethylene glycol): Mechanical, thermal, and morphology properties. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.39742 es_ES
dc.description.references Choi, K., Choi, M.-C., Han, D.-H., Park, T.-S., & Ha, C.-S. (2013). Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending. European Polymer Journal, 49(8), 2356-2364. doi:10.1016/j.eurpolymj.2013.05.027 es_ES
dc.description.references Pluta, M., Paul, M.-A., Alexandre, M., & Dubois, P. (2005). Plasticized polylactide/clay nanocomposites. I. The role of filler content and its surface organo-modification on the physico-chemical properties. Journal of Polymer Science Part B: Polymer Physics, 44(2), 299-311. doi:10.1002/polb.20694 es_ES
dc.description.references Martínez-Abad, A., Lagarón, J. M., & Ocio, M. J. (2014). Antimicrobial beeswax coated polylactide films with silver control release capacity. International Journal of Food Microbiology, 174, 39-46. doi:10.1016/j.ijfoodmicro.2013.12.028 es_ES
dc.description.references Bonilla, J., Fortunati, E., Vargas, M., Chiralt, A., & Kenny, J. M. (2013). Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. Journal of Food Engineering, 119(2), 236-243. doi:10.1016/j.jfoodeng.2013.05.026 es_ES
dc.description.references Muller, J., Jiménez, A., González-Martínez, C., & Chiralt, A. (2016). Influence of plasticizers on thermal properties and crystallization behaviour of poly(lactic acid) films obtained by compression moulding. Polymer International, 65(8), 970-978. doi:10.1002/pi.5142 es_ES
dc.description.references Rocca-Smith, J. R., Karbowiak, T., Marcuzzo, E., Sensidoni, A., Piasente, F., Champion, D., … Debeaufort, F. (2016). Impact of corona treatment on PLA film properties. Polymer Degradation and Stability, 132, 109-116. doi:10.1016/j.polymdegradstab.2016.03.020 es_ES
dc.description.references Arrieta, M. P., Fortunati, E., Dominici, F., López, J., & Kenny, J. M. (2015). Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 121, 265-275. doi:10.1016/j.carbpol.2014.12.056 es_ES
dc.description.references Pivsa-Art, W., Pavasupree, S., O-Charoen, N., Insuan, U., Jailak, P., & Pivsa-Art, S. (2011). Preparation of Polymer Blends Between Poly (L-Lactic Acid), Poly (Butylene Succinate-Co-Adipate) and Poly (Butylene Adipate-Co-Terephthalate) for Blow Film Industrial Application. Energy Procedia, 9, 581-588. doi:10.1016/j.egypro.2011.09.068 es_ES
dc.description.references Qin, Y., Liu, D., Wu, Y., Yuan, M., Li, L., & Yang, J. (2015). Effect of PLA/PCL/cinnamaldehyde antimicrobial packaging on physicochemical and microbial quality of button mushroom (Agaricus bisporus). Postharvest Biology and Technology, 99, 73-79. doi:10.1016/j.postharvbio.2014.07.018 es_ES
dc.description.references Fortunati, E., Puglia, D., Iannoni, A., Terenzi, A., Kenny, J. M., & Torre, L. (2017). Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films. Materials, 10(7), 809. doi:10.3390/ma10070809 es_ES
dc.description.references Acioli-Moura, R., & Sun, X. S. (2008). Thermal degradation and physical aging of poly(lactic acid) and its blends with starch. Polymer Engineering & Science, 48(4), 829-836. doi:10.1002/pen.21019 es_ES
dc.description.references B., A., Suin, S., & Khatua, B. B. (2014). Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydrate Polymers, 110, 430-439. doi:10.1016/j.carbpol.2014.04.024 es_ES
dc.description.references Bie, P., Liu, P., Yu, L., Li, X., Chen, L., & Xie, F. (2013). The properties of antimicrobial films derived from poly(lactic acid)/starch/chitosan blended matrix. Carbohydrate Polymers, 98(1), 959-966. doi:10.1016/j.carbpol.2013.07.004 es_ES
dc.description.references Huneault, M. A., & Li, H. (2007). Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer, 48(1), 270-280. doi:10.1016/j.polymer.2006.11.023 es_ES
dc.description.references Hwang, S. W., Lee, S. B., Lee, C. K., Lee, J. Y., Shim, J. K., Selke, S. E. M., … Auras, R. (2012). Grafting of maleic anhydride on poly(L-lactic acid). Effects on physical and mechanical properties. Polymer Testing, 31(2), 333-344. doi:10.1016/j.polymertesting.2011.12.005 es_ES
dc.description.references Jariyasakoolroj, P., & Chirachanchai, S. (2014). Silane modified starch for compatible reactive blend with poly(lactic acid). Carbohydrate Polymers, 106, 255-263. doi:10.1016/j.carbpol.2014.02.018 es_ES
dc.description.references Le Bolay, N., Lamure, A., Gallego Leis, N., & Subhani, A. (2012). How to combine a hydrophobic matrix and a hydrophilic filler without adding a compatibilizer – Co-grinding enhances use properties of Renewable PLA–starch composites. Chemical Engineering and Processing: Process Intensification, 56, 1-9. doi:10.1016/j.cep.2012.03.005 es_ES
dc.description.references Phetwarotai, W., Potiyaraj, P., & Aht-Ong, D. (2012). Characteristics of biodegradable polylactide/gelatinized starch films: Effects of starch, plasticizer, and compatibilizer. Journal of Applied Polymer Science, 126(S1), E162-E172. doi:10.1002/app.36736 es_ES
dc.description.references Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Polymers, 146, 36-45. doi:10.1016/j.carbpol.2016.03.051 es_ES
dc.description.references Teixeira, E. de M., Curvelo, A. A. S., Corrêa, A. C., Marconcini, J. M., Glenn, G. M., & Mattoso, L. H. C. (2012). Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Products, 37(1), 61-68. doi:10.1016/j.indcrop.2011.11.036 es_ES
dc.description.references Wang, H., Sun, X., & Seib, P. (2002). Mechanical properties of poly(lactic acid) and wheat starch blends with methylenediphenyl diisocyanate. Journal of Applied Polymer Science, 84(6), 1257-1262. doi:10.1002/app.10457 es_ES
dc.description.references Wang, N., Yu, J., Chang, P. R., & Ma, X. (2007). Influence of Citric Acid on the Properties of Glycerol-plasticized dry Starch (DTPS) and DTPS/Poly(lactic acid) Blends. Starch - Stärke, 59(9), 409-417. doi:10.1002/star.200700617 es_ES
dc.description.references Wokadala, O. C., Emmambux, N. M., & Ray, S. S. (2014). Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch. Carbohydrate Polymers, 112, 216-224. doi:10.1016/j.carbpol.2014.05.095 es_ES
dc.description.references Xiong, Z., Zhang, L., Ma, S., Yang, Y., Zhang, C., Tang, Z., & Zhu, J. (2013). Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends. Carbohydrate Polymers, 94(1), 235-243. doi:10.1016/j.carbpol.2013.01.038 es_ES
dc.description.references Yokesahachart, C., & Yoksan, R. (2011). Effect of amphiphilic molecules on characteristics and tensile properties of thermoplastic starch and its blends with poly(lactic acid). Carbohydrate Polymers, 83(1), 22-31. doi:10.1016/j.carbpol.2010.07.020 es_ES
dc.description.references L’amidon et le PLA: Deux Biopolymères sur le Marché, Note de Synthèse 18 Janvier 2011http://www.valbiom.be/files/library/Docs/Biopolymeres/amidonpla20111297333283.pdf es_ES
dc.description.references Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2010). Development of Edible Films and Coatings with Antimicrobial Activity. Food and Bioprocess Technology, 4(6), 849-875. doi:10.1007/s11947-010-0434-1 es_ES
dc.description.references Durrani, C. M., & Donald, A. M. (1995). Physical characterisation of amylopectin gels. Polymer Gels and Networks, 3(1), 1-27. doi:10.1016/0966-7822(94)00005-r es_ES
dc.description.references Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Effect of the incorporation of surfactants on the physical properties of corn starch films. Food Hydrocolloids, 38, 66-75. doi:10.1016/j.foodhyd.2013.11.011 es_ES
dc.description.references Acosta, S., Jiménez, A., Cháfer, M., González-Martínez, C., & Chiralt, A. (2015). Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids, 49, 135-143. doi:10.1016/j.foodhyd.2015.03.015 es_ES
dc.description.references Souza, A. C., Goto, G. E. O., Mainardi, J. A., Coelho, A. C. V., & Tadini, C. C. (2013). Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. LWT - Food Science and Technology, 54(2), 346-352. doi:10.1016/j.lwt.2013.06.017 es_ES
dc.description.references CHAKRABORTY, S., SAHOO, B., TERAOKA, I., & GROSS, R. (2005). Solution properties of starch nanoparticles in water and DMSO as studied by dynamic light scattering. Carbohydrate Polymers, 60(4), 475-481. doi:10.1016/j.carbpol.2005.03.011 es_ES
dc.description.references Moreno, O., Pastor, C., Muller, J., Atarés, L., González, C., & Chiralt, A. (2014). Physical and bioactive properties of corn starch – Buttermilk edible films. Journal of Food Engineering, 141, 27-36. doi:10.1016/j.jfoodeng.2014.05.015 es_ES
dc.description.references Shirai, M. A., Grossmann, M. V. E., Mali, S., Yamashita, F., Garcia, P. S., & Müller, C. M. O. (2013). Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydrate Polymers, 92(1), 19-22. doi:10.1016/j.carbpol.2012.09.038 es_ES
dc.description.references Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydrate Polymers, 109, 155-165. doi:10.1016/j.carbpol.2014.03.059 es_ES
dc.description.references Versino, F., López, O. V., & García, M. A. (2015). Sustainable use of cassava ( Manihot esculenta ) roots as raw material for biocomposites development. Industrial Crops and Products, 65, 79-89. doi:10.1016/j.indcrop.2014.11.054 es_ES
dc.description.references Lopez, O., Garcia, M. A., Villar, M. A., Gentili, A., Rodriguez, M. S., & Albertengo, L. (2014). Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT - Food Science and Technology, 57(1), 106-115. doi:10.1016/j.lwt.2014.01.024 es_ES
dc.description.references Tai, N. L., Adhikari, R., Shanks, R., & Adhikari, B. (2017). Flexible starch-polyurethane films: Physiochemical characteristics and hydrophobicity. Carbohydrate Polymers, 163, 236-246. doi:10.1016/j.carbpol.2017.01.082 es_ES
dc.description.references Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and Biodegradable Starch Films: A Review. Food and Bioprocess Technology, 5(6), 2058-2076. doi:10.1007/s11947-012-0835-4 es_ES
dc.description.references Cano, A., Cháfer, M., Chiralt, A., & González-Martínez, C. (2016). Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packaging and Shelf Life, 10, 16-24. doi:10.1016/j.fpsl.2016.07.002 es_ES
dc.description.references Castillo, L., López, O., López, C., Zaritzky, N., García, M. A., Barbosa, S., & Villar, M. (2013). Thermoplastic starch films reinforced with talc nanoparticles. Carbohydrate Polymers, 95(2), 664-674. doi:10.1016/j.carbpol.2013.03.026 es_ES
dc.description.references García, L., Cova, A., Sandoval, A. J., Müller, A. J., & Carrasquel, L. M. (2012). Glass transition temperatures of cassava starch–whey protein concentrate systems at low and intermediate water content. Carbohydrate Polymers, 87(2), 1375-1382. doi:10.1016/j.carbpol.2011.09.035 es_ES
dc.description.references Ortega-Toro, R., Morey, I., Talens, P., & Chiralt, A. (2015). Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydrate Polymers, 127, 282-290. doi:10.1016/j.carbpol.2015.03.080 es_ES
dc.description.references Kalichevsky, M. T., & Blanshard, J. M. V. (1993). The effect of fructose and water on the glass transition of amylopectin. Carbohydrate Polymers, 20(2), 107-113. doi:10.1016/0144-8617(93)90085-i es_ES
dc.description.references Mathew, A. P., & Dufresne, A. (2002). Plasticized Waxy Maize Starch: Effect of Polyols and Relative Humidity on Material Properties. Biomacromolecules, 3(5), 1101-1108. doi:10.1021/bm020065p es_ES
dc.description.references ROZ, A., CARVALHO, A., GANDINI, A., & CURVELO, A. (2006). The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydrate Polymers, 63(3), 417-424. doi:10.1016/j.carbpol.2005.09.017 es_ES
dc.description.references Huang, M., Yu, J., & Ma, X. (2005). Ethanolamine as a novel plasticiser for thermoplastic starch. Polymer Degradation and Stability, 90(3), 501-507. doi:10.1016/j.polymdegradstab.2005.04.005 es_ES
dc.description.references Ma, X., & Yu, J. (2004). Formamide as the plasticizer for thermoplastic starch. Journal of Applied Polymer Science, 93(4), 1769-1773. doi:10.1002/app.20628 es_ES
dc.description.references Perry, P. A., & Donald, A. M. (2000). The Role of Plasticization in Starch Granule Assembly. Biomacromolecules, 1(3), 424-432. doi:10.1021/bm0055145 es_ES
dc.description.references Bastos, D. C., Santos, A. E. F., da Silva, M. L. V. J., & Simão, R. A. (2009). Hydrophobic corn starch thermoplastic films produced by plasma treatment. Ultramicroscopy, 109(8), 1089-1093. doi:10.1016/j.ultramic.2009.03.031 es_ES
dc.description.references Turalija, M., Bischof, S., Budimir, A., & Gaan, S. (2016). Antimicrobial PLA films from environment friendly additives. Composites Part B: Engineering, 102, 94-99. doi:10.1016/j.compositesb.2016.07.017 es_ES
dc.description.references Commission Communication on the Results of the Risk Evaluation and the Risk Reduction Strategies for the Substances: Piperazine; Cyclohexane; Methylenediphenyl Diisocyanate; But-2yne-1,4-diol; Methyloxirane; Aniline; 2-Ethylhexylacrylate; 1,4-Dichlorobenzene; 3,5-dinitro-2,6-dimethyl-4-tert- butylacetophenone; Di-(2-ethylhexyl)phthalate; Phenol; 5-tert-butyl-2,4,6-trinitro-m-xylenehttp://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52008XC0207(02) es_ES
dc.description.references Abdillahi, H., Chabrat, E., Rouilly, A., & Rigal, L. (2013). Influence of citric acid on thermoplastic wheat flour/poly(lactic acid) blends. II. Barrier properties and water vapor sorption isotherms. Industrial Crops and Products, 50, 104-111. doi:10.1016/j.indcrop.2013.06.028 es_ES
dc.description.references Bocz, K., Szolnoki, B., Marosi, A., Tábi, T., Wladyka-Przybylak, M., & Marosi, G. (2014). Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system. Polymer Degradation and Stability, 106, 63-73. doi:10.1016/j.polymdegradstab.2013.10.025 es_ES
dc.description.references Cai, J., Liu, M., Wang, L., Yao, K., Li, S., & Xiong, H. (2011). Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydrate Polymers, 86(2), 941-947. doi:10.1016/j.carbpol.2011.05.044 es_ES
dc.description.references Orozco, V. H., Brostow, W., Chonkaew, W., & López, B. L. (2009). Preparation and Characterization of Poly(Lactic Acid)-g-Maleic Anhydride + Starch Blends. Macromolecular Symposia, 277(1), 69-80. doi:10.1002/masy.200950309 es_ES
dc.description.references Ren, J., Fu, H., Ren, T., & Yuan, W. (2009). Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbohydrate Polymers, 77(3), 576-582. doi:10.1016/j.carbpol.2009.01.024 es_ES
dc.description.references Soares, F. C., Yamashita, F., Müller, C. M. O., & Pires, A. T. N. (2013). Thermoplastic starch/poly(lactic acid) sheets coated with cross-linked chitosan. Polymer Testing, 32(1), 94-98. doi:10.1016/j.polymertesting.2012.09.005 es_ES
dc.description.references Wang, N., Yu, J., Chang, P. R., & Ma, X. (2008). Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends. Carbohydrate Polymers, 71(1), 109-118. doi:10.1016/j.carbpol.2007.05.025 es_ES
dc.description.references Xiong, Z., Yang, Y., Feng, J., Zhang, X., Zhang, C., Tang, Z., & Zhu, J. (2013). Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92(1), 810-816. doi:10.1016/j.carbpol.2012.09.007 es_ES
dc.description.references Xiong, Z., Li, C., Ma, S., Feng, J., Yang, Y., Zhang, R., & Zhu, J. (2013). The properties of poly(lactic acid)/starch blends with a functionalized plant oil: Tung oil anhydride. Carbohydrate Polymers, 95(1), 77-84. doi:10.1016/j.carbpol.2013.02.054 es_ES
dc.description.references Xiong, Z., Ma, S., Fan, L., Tang, Z., Zhang, R., Na, H., & Zhu, J. (2014). Surface hydrophobic modification of starch with bio-based epoxy resins to fabricate high-performance polylactide composite materials. Composites Science and Technology, 94, 16-22. doi:10.1016/j.compscitech.2014.01.007 es_ES
dc.description.references Zuo, Y., Gu, J., Yang, L., Qiao, Z., Tan, H., & Zhang, Y. (2014). Preparation and characterization of dry method esterified starch/polylactic acid composite materials. International Journal of Biological Macromolecules, 64, 174-180. doi:10.1016/j.ijbiomac.2013.11.026 es_ES
dc.description.references Muller, J., González-Martínez, C., & Chiralt, A. (2017). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95, 56-70. doi:10.1016/j.eurpolymj.2017.07.019 es_ES
dc.description.references Svagan, A. J., Åkesson, A., Cárdenas, M., Bulut, S., Knudsen, J. C., Risbo, J., & Plackett, D. (2012). Transparent Films Based on PLA and Montmorillonite with Tunable Oxygen Barrier Properties. Biomacromolecules, 13(2), 397-405. doi:10.1021/bm201438m es_ES
dc.description.references Wang, X., Du, Y., & Luo, J. (2008). Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity. Nanotechnology, 19(6), 065707. doi:10.1088/0957-4484/19/6/065707 es_ES
dc.description.references Requena, R., Jiménez, A., Vargas, M., & Chiralt, A. (2016). Poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] active bilayer films obtained by compression moulding and applying essential oils at the interface. Polymer International, 65(8), 883-891. doi:10.1002/pi.5091 es_ES
dc.description.references Rhim, J.-W., Lee, J. H., & Ng, P. K. W. (2007). Mechanical and barrier properties of biodegradable soy protein isolate-based films coated with polylactic acid. LWT - Food Science and Technology, 40(2), 232-238. doi:10.1016/j.lwt.2005.10.002 es_ES
dc.description.references Martucci, J. F., & Ruseckaite, R. A. (2010). Three-layer sheets based on gelatin and poly(lactic acid), part 1: Preparation and properties. Journal of Applied Polymer Science, 118(5), 3102-3110. doi:10.1002/app.32751 es_ES
dc.description.references Bonifacio, M. A., Cometa, S., Dicarlo, M., Baruzzi, F., de Candia, S., Gloria, A., … De Giglio, E. (2017). Gallium-modified chitosan/poly(acrylic acid) bilayer coatings for improved titanium implant performances. Carbohydrate Polymers, 166, 348-357. doi:10.1016/j.carbpol.2017.03.009 es_ES
dc.description.references Debeaufort, F. (2000). Lipid hydrophobicity and physical state effects on the properties of bilayer edible films. Journal of Membrane Science, 180(1), 47-55. doi:10.1016/s0376-7388(00)00532-9 es_ES
dc.description.references Ferreira, A. R. V., Torres, C. A. V., Freitas, F., Sevrin, C., Grandfils, C., Reis, M. A. M., … Coelhoso, I. M. (2016). Development and characterization of bilayer films of FucoPol and chitosan. Carbohydrate Polymers, 147, 8-15. doi:10.1016/j.carbpol.2016.03.089 es_ES
dc.description.references Irissin-Mangata, J., Boutevin, B., & Bauduin, G. (1999). Bilayer films composed of wheat gluten and functionalized polyethylene: Permeability and other physical properties. Polymer Bulletin, 43(4-5), 441-448. doi:10.1007/s002890050633 es_ES
dc.description.references Rešček, A., Kratofil Krehula, L., Katančić, Z., & Hrnjak-Murgić, Z. (2015). Active Bilayer PE/PCL Films for Food Packaging Modified with Zinc Oxide and Casein. Croatica Chemica Acta, 88(4), 461-473. doi:10.5562/cca2768 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem