Mostrar el registro sencillo del ítem
dc.contributor.author | Muller, Justine | es_ES |
dc.contributor.author | González Martínez, María Consuelo | es_ES |
dc.contributor.author | Chiralt, A. | es_ES |
dc.date.accessioned | 2020-07-25T03:31:11Z | |
dc.date.available | 2020-07-25T03:31:11Z | |
dc.date.issued | 2017-08-15 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148679 | |
dc.description.abstract | [EN] The massive use of synthetic plastics, in particular in the food packaging area, has a great environmental impact, and alternative more ecologic materials are being required. Poly(lactic) acid (PLA) and starch have been extensively studied as potential replacements for non-degradable petrochemical polymers on the basis of their availability, adequate food contact properties and competitive cost. Nevertheless, both polymers exhibit some drawbacks for packaging uses and need to be adapted to the food packaging requirements. Starch, in particular, is very water sensitive and its film properties are heavily dependent on the moisture content, exhibiting relatively low mechanical resistance. PLA films are very brittle and offer low resistance to oxygen permeation. Their combination as blend or multilayer films could provide properties that are more adequate for packaging purposes on the basis of their complementary characteristics. The main characteristics of PLA and starch in terms of not only the barrier and mechanical properties of their films but also of their combinations, by using blending or multilayer strategies, have been analysed, identifying components or processes that favour the polymer compatibility and the good performance of the combined materials. The properties of some blends/combinations have been discussed in comparison with those of pure polymer films. | es_ES |
dc.description.sponsorship | The authors thank the Ministerio de Economía y Competitividad (Spain) for the financial support provided through Project AGL2013-42989-R and AGL2016-76699-R. Author Justine Muller thanks the Generalitat Valènciana for the Santiago Grisolía Grant (GRISOLIA/2014/003). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Materials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Poly(lactic) acid | es_ES |
dc.subject | Starch | es_ES |
dc.subject | Films | es_ES |
dc.subject | Blends | es_ES |
dc.subject | Multilayer | es_ES |
dc.subject | Food packaging | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject | Barrier properties | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Combination of poly(lactic) acid (PLA) and starch to obtain biodegradable materials for food packaging | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ma10080952 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2014%2F003/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2013-42989-R/ES/NUEVOS MATERIALES BIODEGRADABLES MULTICAPA PARA ENVASADO ACTIVO DE ALIMENTOS SENSIBLES AL DETERIORO MICROBIANO Y%2FO OXIDATIVO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Muller, J.; González Martínez, MC.; Chiralt, A. (2017). Combination of poly(lactic) acid (PLA) and starch to obtain biodegradable materials for food packaging. Materials. 10(8):1-22. https://doi.org/10.3390/ma10080952 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ma10080952 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.eissn | 1996-1944 | es_ES |
dc.identifier.pmid | 28809808 | es_ES |
dc.identifier.pmcid | PMC5578318 | es_ES |
dc.relation.pasarela | S\352165 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Plastic Europe—Association of Plastics Manufacturers, Plastic—The Facts 2016http://www.plasticseurope.org/Document/plastics---the-facts-2016-15787.aspx?FolID=2 | es_ES |
dc.description.references | Food Packaging Forum—Food Packaging Health, Food Packaging Materialshttp://www.foodpackagingforum.org/food-packaging-health/food-packaging-materials | es_ES |
dc.description.references | Dossier—Bioplastics as Food Contact Materialshttp://www.foodpackagingforum.org/fpf-2016/wp-content/uploads/2015/11/FPF_Dossier06_Bioplastics.pdf | es_ES |
dc.description.references | Armentano, I., Bitinis, N., Fortunati, E., Mattioli, S., Rescignano, N., Verdejo, R., … Kenny, J. M. (2013). Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science, 38(10-11), 1720-1747. doi:10.1016/j.progpolymsci.2013.05.010 | es_ES |
dc.description.references | Auras, R., Harte, B., & Selke, S. (2004). An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience, 4(9), 835-864. doi:10.1002/mabi.200400043 | es_ES |
dc.description.references | Mattioli, S., Peltzer, M., Fortunati, E., Armentano, I., Jiménez, A., & Kenny, J. M. (2013). Structure, gas-barrier properties and overall migration of poly(lactic acid) films coated with hydrogenated amorphous carbon layers. Carbon, 63, 274-282. doi:10.1016/j.carbon.2013.06.080 | es_ES |
dc.description.references | Rhim, J.-W., Hong, S.-I., & Ha, C.-S. (2009). Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT - Food Science and Technology, 42(2), 612-617. doi:10.1016/j.lwt.2008.02.015 | es_ES |
dc.description.references | Fortunati, E., Aluigi, A., Armentano, I., Morena, F., Emiliani, C., Martino, S., … Puglia, D. (2015). Keratins extracted from Merino wool and Brown Alpaca fibres: Thermal, mechanical and biological properties of PLLA based biocomposites. Materials Science and Engineering: C, 47, 394-406. doi:10.1016/j.msec.2014.11.007 | es_ES |
dc.description.references | Gui, Z., Xu, Y., Gao, Y., Lu, C., & Cheng, S. (2012). Novel polyethylene glycol-based polyester-toughened polylactide. Materials Letters, 71, 63-65. doi:10.1016/j.matlet.2011.12.045 | es_ES |
dc.description.references | Rasal, R. M., Janorkar, A. V., & Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356. doi:10.1016/j.progpolymsci.2009.12.003 | es_ES |
dc.description.references | Hiljanen-Vainio, M., Varpomaa, P., Seppälä, J., & Törmälä, P. (1996). Modification of poly(L-lactides) by blending: mechanical and hydrolytic behavior. Macromolecular Chemistry and Physics, 197(4), 1503-1523. doi:10.1002/macp.1996.021970427 | es_ES |
dc.description.references | Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. doi:10.1016/j.progpolymsci.2008.05.004 | es_ES |
dc.description.references | González, A., & Alvarez Igarzabal, C. I. (2013). Soy protein – Poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocolloids, 33(2), 289-296. doi:10.1016/j.foodhyd.2013.03.010 | es_ES |
dc.description.references | Jamshidian, M., Tehrany, E. A., & Desobry, S. (2012). Antioxidants Release from Solvent-Cast PLA Film: Investigation of PLA Antioxidant-Active Packaging. Food and Bioprocess Technology, 6(6), 1450-1463. doi:10.1007/s11947-012-0830-9 | es_ES |
dc.description.references | Qin, Y., Yang, J., & Xue, J. (2014). Characterization of antimicrobial poly(lactic acid)/poly(trimethylene carbonate) films with cinnamaldehyde. Journal of Materials Science, 50(3), 1150-1158. doi:10.1007/s10853-014-8671-8 | es_ES |
dc.description.references | Ahmed, J., Hiremath, N., & Jacob, H. (2016). Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to InhibitStaphylococcus aureusandCampylobacter jejuni. Journal of Food Science, 81(2), E419-E429. doi:10.1111/1750-3841.13193 | es_ES |
dc.description.references | Hughes, J., Thomas, R., Byun, Y., & Whiteside, S. (2012). Improved flexibility of thermally stable poly-lactic acid (PLA). Carbohydrate Polymers, 88(1), 165-172. doi:10.1016/j.carbpol.2011.11.078 | es_ES |
dc.description.references | Özge Erdohan, Z., Çam, B., & Turhan, K. N. (2013). Characterization of antimicrobial polylactic acid based films. Journal of Food Engineering, 119(2), 308-315. doi:10.1016/j.jfoodeng.2013.05.043 | es_ES |
dc.description.references | Baiardo, M., Frisoni, G., Scandola, M., Rimelen, M., Lips, D., Ruffieux, K., & Wintermantel, E. (2003). Thermal and mechanical properties of plasticized poly(L-lactic acid). Journal of Applied Polymer Science, 90(7), 1731-1738. doi:10.1002/app.12549 | es_ES |
dc.description.references | Coltelli, M.-B., Maggiore, I. D., Bertoldo, M., Signori, F., Bronco, S., & Ciardelli, F. (2008). Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization. Journal of Applied Polymer Science, 110(2), 1250-1262. doi:10.1002/app.28512 | es_ES |
dc.description.references | Ljungberg, N., & Wesslén, B. (2002). The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). Journal of Applied Polymer Science, 86(5), 1227-1234. doi:10.1002/app.11077 | es_ES |
dc.description.references | Tee, Y. B., Talib, R. A., Abdan, K., Chin, N. L., Basha, R. K., & Yunos, K. F. M. (2014). Toughening Poly(Lactic Acid) and Aiding the Melt-compounding with Bio-sourced Plasticizers. Agriculture and Agricultural Science Procedia, 2, 289-295. doi:10.1016/j.aaspro.2014.11.041 | es_ES |
dc.description.references | Chieng, B. W., Ibrahim, N. A., Wan Yunus, W. M. Z., & Zobir Hussein, M. (2013). Plasticized poly(lactic acid) with low molecular weight poly(ethylene glycol): Mechanical, thermal, and morphology properties. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.39742 | es_ES |
dc.description.references | Choi, K., Choi, M.-C., Han, D.-H., Park, T.-S., & Ha, C.-S. (2013). Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending. European Polymer Journal, 49(8), 2356-2364. doi:10.1016/j.eurpolymj.2013.05.027 | es_ES |
dc.description.references | Pluta, M., Paul, M.-A., Alexandre, M., & Dubois, P. (2005). Plasticized polylactide/clay nanocomposites. I. The role of filler content and its surface organo-modification on the physico-chemical properties. Journal of Polymer Science Part B: Polymer Physics, 44(2), 299-311. doi:10.1002/polb.20694 | es_ES |
dc.description.references | Martínez-Abad, A., Lagarón, J. M., & Ocio, M. J. (2014). Antimicrobial beeswax coated polylactide films with silver control release capacity. International Journal of Food Microbiology, 174, 39-46. doi:10.1016/j.ijfoodmicro.2013.12.028 | es_ES |
dc.description.references | Bonilla, J., Fortunati, E., Vargas, M., Chiralt, A., & Kenny, J. M. (2013). Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. Journal of Food Engineering, 119(2), 236-243. doi:10.1016/j.jfoodeng.2013.05.026 | es_ES |
dc.description.references | Muller, J., Jiménez, A., González-Martínez, C., & Chiralt, A. (2016). Influence of plasticizers on thermal properties and crystallization behaviour of poly(lactic acid) films obtained by compression moulding. Polymer International, 65(8), 970-978. doi:10.1002/pi.5142 | es_ES |
dc.description.references | Rocca-Smith, J. R., Karbowiak, T., Marcuzzo, E., Sensidoni, A., Piasente, F., Champion, D., … Debeaufort, F. (2016). Impact of corona treatment on PLA film properties. Polymer Degradation and Stability, 132, 109-116. doi:10.1016/j.polymdegradstab.2016.03.020 | es_ES |
dc.description.references | Arrieta, M. P., Fortunati, E., Dominici, F., López, J., & Kenny, J. M. (2015). Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 121, 265-275. doi:10.1016/j.carbpol.2014.12.056 | es_ES |
dc.description.references | Pivsa-Art, W., Pavasupree, S., O-Charoen, N., Insuan, U., Jailak, P., & Pivsa-Art, S. (2011). Preparation of Polymer Blends Between Poly (L-Lactic Acid), Poly (Butylene Succinate-Co-Adipate) and Poly (Butylene Adipate-Co-Terephthalate) for Blow Film Industrial Application. Energy Procedia, 9, 581-588. doi:10.1016/j.egypro.2011.09.068 | es_ES |
dc.description.references | Qin, Y., Liu, D., Wu, Y., Yuan, M., Li, L., & Yang, J. (2015). Effect of PLA/PCL/cinnamaldehyde antimicrobial packaging on physicochemical and microbial quality of button mushroom (Agaricus bisporus). Postharvest Biology and Technology, 99, 73-79. doi:10.1016/j.postharvbio.2014.07.018 | es_ES |
dc.description.references | Fortunati, E., Puglia, D., Iannoni, A., Terenzi, A., Kenny, J. M., & Torre, L. (2017). Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films. Materials, 10(7), 809. doi:10.3390/ma10070809 | es_ES |
dc.description.references | Acioli-Moura, R., & Sun, X. S. (2008). Thermal degradation and physical aging of poly(lactic acid) and its blends with starch. Polymer Engineering & Science, 48(4), 829-836. doi:10.1002/pen.21019 | es_ES |
dc.description.references | B., A., Suin, S., & Khatua, B. B. (2014). Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydrate Polymers, 110, 430-439. doi:10.1016/j.carbpol.2014.04.024 | es_ES |
dc.description.references | Bie, P., Liu, P., Yu, L., Li, X., Chen, L., & Xie, F. (2013). The properties of antimicrobial films derived from poly(lactic acid)/starch/chitosan blended matrix. Carbohydrate Polymers, 98(1), 959-966. doi:10.1016/j.carbpol.2013.07.004 | es_ES |
dc.description.references | Huneault, M. A., & Li, H. (2007). Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer, 48(1), 270-280. doi:10.1016/j.polymer.2006.11.023 | es_ES |
dc.description.references | Hwang, S. W., Lee, S. B., Lee, C. K., Lee, J. Y., Shim, J. K., Selke, S. E. M., … Auras, R. (2012). Grafting of maleic anhydride on poly(L-lactic acid). Effects on physical and mechanical properties. Polymer Testing, 31(2), 333-344. doi:10.1016/j.polymertesting.2011.12.005 | es_ES |
dc.description.references | Jariyasakoolroj, P., & Chirachanchai, S. (2014). Silane modified starch for compatible reactive blend with poly(lactic acid). Carbohydrate Polymers, 106, 255-263. doi:10.1016/j.carbpol.2014.02.018 | es_ES |
dc.description.references | Le Bolay, N., Lamure, A., Gallego Leis, N., & Subhani, A. (2012). How to combine a hydrophobic matrix and a hydrophilic filler without adding a compatibilizer – Co-grinding enhances use properties of Renewable PLA–starch composites. Chemical Engineering and Processing: Process Intensification, 56, 1-9. doi:10.1016/j.cep.2012.03.005 | es_ES |
dc.description.references | Phetwarotai, W., Potiyaraj, P., & Aht-Ong, D. (2012). Characteristics of biodegradable polylactide/gelatinized starch films: Effects of starch, plasticizer, and compatibilizer. Journal of Applied Polymer Science, 126(S1), E162-E172. doi:10.1002/app.36736 | es_ES |
dc.description.references | Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Polymers, 146, 36-45. doi:10.1016/j.carbpol.2016.03.051 | es_ES |
dc.description.references | Teixeira, E. de M., Curvelo, A. A. S., Corrêa, A. C., Marconcini, J. M., Glenn, G. M., & Mattoso, L. H. C. (2012). Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Products, 37(1), 61-68. doi:10.1016/j.indcrop.2011.11.036 | es_ES |
dc.description.references | Wang, H., Sun, X., & Seib, P. (2002). Mechanical properties of poly(lactic acid) and wheat starch blends with methylenediphenyl diisocyanate. Journal of Applied Polymer Science, 84(6), 1257-1262. doi:10.1002/app.10457 | es_ES |
dc.description.references | Wang, N., Yu, J., Chang, P. R., & Ma, X. (2007). Influence of Citric Acid on the Properties of Glycerol-plasticized dry Starch (DTPS) and DTPS/Poly(lactic acid) Blends. Starch - Stärke, 59(9), 409-417. doi:10.1002/star.200700617 | es_ES |
dc.description.references | Wokadala, O. C., Emmambux, N. M., & Ray, S. S. (2014). Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch. Carbohydrate Polymers, 112, 216-224. doi:10.1016/j.carbpol.2014.05.095 | es_ES |
dc.description.references | Xiong, Z., Zhang, L., Ma, S., Yang, Y., Zhang, C., Tang, Z., & Zhu, J. (2013). Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends. Carbohydrate Polymers, 94(1), 235-243. doi:10.1016/j.carbpol.2013.01.038 | es_ES |
dc.description.references | Yokesahachart, C., & Yoksan, R. (2011). Effect of amphiphilic molecules on characteristics and tensile properties of thermoplastic starch and its blends with poly(lactic acid). Carbohydrate Polymers, 83(1), 22-31. doi:10.1016/j.carbpol.2010.07.020 | es_ES |
dc.description.references | L’amidon et le PLA: Deux Biopolymères sur le Marché, Note de Synthèse 18 Janvier 2011http://www.valbiom.be/files/library/Docs/Biopolymeres/amidonpla20111297333283.pdf | es_ES |
dc.description.references | Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2010). Development of Edible Films and Coatings with Antimicrobial Activity. Food and Bioprocess Technology, 4(6), 849-875. doi:10.1007/s11947-010-0434-1 | es_ES |
dc.description.references | Durrani, C. M., & Donald, A. M. (1995). Physical characterisation of amylopectin gels. Polymer Gels and Networks, 3(1), 1-27. doi:10.1016/0966-7822(94)00005-r | es_ES |
dc.description.references | Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Effect of the incorporation of surfactants on the physical properties of corn starch films. Food Hydrocolloids, 38, 66-75. doi:10.1016/j.foodhyd.2013.11.011 | es_ES |
dc.description.references | Acosta, S., Jiménez, A., Cháfer, M., González-Martínez, C., & Chiralt, A. (2015). Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids, 49, 135-143. doi:10.1016/j.foodhyd.2015.03.015 | es_ES |
dc.description.references | Souza, A. C., Goto, G. E. O., Mainardi, J. A., Coelho, A. C. V., & Tadini, C. C. (2013). Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. LWT - Food Science and Technology, 54(2), 346-352. doi:10.1016/j.lwt.2013.06.017 | es_ES |
dc.description.references | CHAKRABORTY, S., SAHOO, B., TERAOKA, I., & GROSS, R. (2005). Solution properties of starch nanoparticles in water and DMSO as studied by dynamic light scattering. Carbohydrate Polymers, 60(4), 475-481. doi:10.1016/j.carbpol.2005.03.011 | es_ES |
dc.description.references | Moreno, O., Pastor, C., Muller, J., Atarés, L., González, C., & Chiralt, A. (2014). Physical and bioactive properties of corn starch – Buttermilk edible films. Journal of Food Engineering, 141, 27-36. doi:10.1016/j.jfoodeng.2014.05.015 | es_ES |
dc.description.references | Shirai, M. A., Grossmann, M. V. E., Mali, S., Yamashita, F., Garcia, P. S., & Müller, C. M. O. (2013). Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydrate Polymers, 92(1), 19-22. doi:10.1016/j.carbpol.2012.09.038 | es_ES |
dc.description.references | Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydrate Polymers, 109, 155-165. doi:10.1016/j.carbpol.2014.03.059 | es_ES |
dc.description.references | Versino, F., López, O. V., & García, M. A. (2015). Sustainable use of cassava ( Manihot esculenta ) roots as raw material for biocomposites development. Industrial Crops and Products, 65, 79-89. doi:10.1016/j.indcrop.2014.11.054 | es_ES |
dc.description.references | Lopez, O., Garcia, M. A., Villar, M. A., Gentili, A., Rodriguez, M. S., & Albertengo, L. (2014). Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT - Food Science and Technology, 57(1), 106-115. doi:10.1016/j.lwt.2014.01.024 | es_ES |
dc.description.references | Tai, N. L., Adhikari, R., Shanks, R., & Adhikari, B. (2017). Flexible starch-polyurethane films: Physiochemical characteristics and hydrophobicity. Carbohydrate Polymers, 163, 236-246. doi:10.1016/j.carbpol.2017.01.082 | es_ES |
dc.description.references | Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and Biodegradable Starch Films: A Review. Food and Bioprocess Technology, 5(6), 2058-2076. doi:10.1007/s11947-012-0835-4 | es_ES |
dc.description.references | Cano, A., Cháfer, M., Chiralt, A., & González-Martínez, C. (2016). Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packaging and Shelf Life, 10, 16-24. doi:10.1016/j.fpsl.2016.07.002 | es_ES |
dc.description.references | Castillo, L., López, O., López, C., Zaritzky, N., García, M. A., Barbosa, S., & Villar, M. (2013). Thermoplastic starch films reinforced with talc nanoparticles. Carbohydrate Polymers, 95(2), 664-674. doi:10.1016/j.carbpol.2013.03.026 | es_ES |
dc.description.references | García, L., Cova, A., Sandoval, A. J., Müller, A. J., & Carrasquel, L. M. (2012). Glass transition temperatures of cassava starch–whey protein concentrate systems at low and intermediate water content. Carbohydrate Polymers, 87(2), 1375-1382. doi:10.1016/j.carbpol.2011.09.035 | es_ES |
dc.description.references | Ortega-Toro, R., Morey, I., Talens, P., & Chiralt, A. (2015). Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydrate Polymers, 127, 282-290. doi:10.1016/j.carbpol.2015.03.080 | es_ES |
dc.description.references | Kalichevsky, M. T., & Blanshard, J. M. V. (1993). The effect of fructose and water on the glass transition of amylopectin. Carbohydrate Polymers, 20(2), 107-113. doi:10.1016/0144-8617(93)90085-i | es_ES |
dc.description.references | Mathew, A. P., & Dufresne, A. (2002). Plasticized Waxy Maize Starch: Effect of Polyols and Relative Humidity on Material Properties. Biomacromolecules, 3(5), 1101-1108. doi:10.1021/bm020065p | es_ES |
dc.description.references | ROZ, A., CARVALHO, A., GANDINI, A., & CURVELO, A. (2006). The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydrate Polymers, 63(3), 417-424. doi:10.1016/j.carbpol.2005.09.017 | es_ES |
dc.description.references | Huang, M., Yu, J., & Ma, X. (2005). Ethanolamine as a novel plasticiser for thermoplastic starch. Polymer Degradation and Stability, 90(3), 501-507. doi:10.1016/j.polymdegradstab.2005.04.005 | es_ES |
dc.description.references | Ma, X., & Yu, J. (2004). Formamide as the plasticizer for thermoplastic starch. Journal of Applied Polymer Science, 93(4), 1769-1773. doi:10.1002/app.20628 | es_ES |
dc.description.references | Perry, P. A., & Donald, A. M. (2000). The Role of Plasticization in Starch Granule Assembly. Biomacromolecules, 1(3), 424-432. doi:10.1021/bm0055145 | es_ES |
dc.description.references | Bastos, D. C., Santos, A. E. F., da Silva, M. L. V. J., & Simão, R. A. (2009). Hydrophobic corn starch thermoplastic films produced by plasma treatment. Ultramicroscopy, 109(8), 1089-1093. doi:10.1016/j.ultramic.2009.03.031 | es_ES |
dc.description.references | Turalija, M., Bischof, S., Budimir, A., & Gaan, S. (2016). Antimicrobial PLA films from environment friendly additives. Composites Part B: Engineering, 102, 94-99. doi:10.1016/j.compositesb.2016.07.017 | es_ES |
dc.description.references | Commission Communication on the Results of the Risk Evaluation and the Risk Reduction Strategies for the Substances: Piperazine; Cyclohexane; Methylenediphenyl Diisocyanate; But-2yne-1,4-diol; Methyloxirane; Aniline; 2-Ethylhexylacrylate; 1,4-Dichlorobenzene; 3,5-dinitro-2,6-dimethyl-4-tert- butylacetophenone; Di-(2-ethylhexyl)phthalate; Phenol; 5-tert-butyl-2,4,6-trinitro-m-xylenehttp://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52008XC0207(02) | es_ES |
dc.description.references | Abdillahi, H., Chabrat, E., Rouilly, A., & Rigal, L. (2013). Influence of citric acid on thermoplastic wheat flour/poly(lactic acid) blends. II. Barrier properties and water vapor sorption isotherms. Industrial Crops and Products, 50, 104-111. doi:10.1016/j.indcrop.2013.06.028 | es_ES |
dc.description.references | Bocz, K., Szolnoki, B., Marosi, A., Tábi, T., Wladyka-Przybylak, M., & Marosi, G. (2014). Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system. Polymer Degradation and Stability, 106, 63-73. doi:10.1016/j.polymdegradstab.2013.10.025 | es_ES |
dc.description.references | Cai, J., Liu, M., Wang, L., Yao, K., Li, S., & Xiong, H. (2011). Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydrate Polymers, 86(2), 941-947. doi:10.1016/j.carbpol.2011.05.044 | es_ES |
dc.description.references | Orozco, V. H., Brostow, W., Chonkaew, W., & López, B. L. (2009). Preparation and Characterization of Poly(Lactic Acid)-g-Maleic Anhydride + Starch Blends. Macromolecular Symposia, 277(1), 69-80. doi:10.1002/masy.200950309 | es_ES |
dc.description.references | Ren, J., Fu, H., Ren, T., & Yuan, W. (2009). Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbohydrate Polymers, 77(3), 576-582. doi:10.1016/j.carbpol.2009.01.024 | es_ES |
dc.description.references | Soares, F. C., Yamashita, F., Müller, C. M. O., & Pires, A. T. N. (2013). Thermoplastic starch/poly(lactic acid) sheets coated with cross-linked chitosan. Polymer Testing, 32(1), 94-98. doi:10.1016/j.polymertesting.2012.09.005 | es_ES |
dc.description.references | Wang, N., Yu, J., Chang, P. R., & Ma, X. (2008). Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends. Carbohydrate Polymers, 71(1), 109-118. doi:10.1016/j.carbpol.2007.05.025 | es_ES |
dc.description.references | Xiong, Z., Yang, Y., Feng, J., Zhang, X., Zhang, C., Tang, Z., & Zhu, J. (2013). Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92(1), 810-816. doi:10.1016/j.carbpol.2012.09.007 | es_ES |
dc.description.references | Xiong, Z., Li, C., Ma, S., Feng, J., Yang, Y., Zhang, R., & Zhu, J. (2013). The properties of poly(lactic acid)/starch blends with a functionalized plant oil: Tung oil anhydride. Carbohydrate Polymers, 95(1), 77-84. doi:10.1016/j.carbpol.2013.02.054 | es_ES |
dc.description.references | Xiong, Z., Ma, S., Fan, L., Tang, Z., Zhang, R., Na, H., & Zhu, J. (2014). Surface hydrophobic modification of starch with bio-based epoxy resins to fabricate high-performance polylactide composite materials. Composites Science and Technology, 94, 16-22. doi:10.1016/j.compscitech.2014.01.007 | es_ES |
dc.description.references | Zuo, Y., Gu, J., Yang, L., Qiao, Z., Tan, H., & Zhang, Y. (2014). Preparation and characterization of dry method esterified starch/polylactic acid composite materials. International Journal of Biological Macromolecules, 64, 174-180. doi:10.1016/j.ijbiomac.2013.11.026 | es_ES |
dc.description.references | Muller, J., González-Martínez, C., & Chiralt, A. (2017). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95, 56-70. doi:10.1016/j.eurpolymj.2017.07.019 | es_ES |
dc.description.references | Svagan, A. J., Åkesson, A., Cárdenas, M., Bulut, S., Knudsen, J. C., Risbo, J., & Plackett, D. (2012). Transparent Films Based on PLA and Montmorillonite with Tunable Oxygen Barrier Properties. Biomacromolecules, 13(2), 397-405. doi:10.1021/bm201438m | es_ES |
dc.description.references | Wang, X., Du, Y., & Luo, J. (2008). Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity. Nanotechnology, 19(6), 065707. doi:10.1088/0957-4484/19/6/065707 | es_ES |
dc.description.references | Requena, R., Jiménez, A., Vargas, M., & Chiralt, A. (2016). Poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] active bilayer films obtained by compression moulding and applying essential oils at the interface. Polymer International, 65(8), 883-891. doi:10.1002/pi.5091 | es_ES |
dc.description.references | Rhim, J.-W., Lee, J. H., & Ng, P. K. W. (2007). Mechanical and barrier properties of biodegradable soy protein isolate-based films coated with polylactic acid. LWT - Food Science and Technology, 40(2), 232-238. doi:10.1016/j.lwt.2005.10.002 | es_ES |
dc.description.references | Martucci, J. F., & Ruseckaite, R. A. (2010). Three-layer sheets based on gelatin and poly(lactic acid), part 1: Preparation and properties. Journal of Applied Polymer Science, 118(5), 3102-3110. doi:10.1002/app.32751 | es_ES |
dc.description.references | Bonifacio, M. A., Cometa, S., Dicarlo, M., Baruzzi, F., de Candia, S., Gloria, A., … De Giglio, E. (2017). Gallium-modified chitosan/poly(acrylic acid) bilayer coatings for improved titanium implant performances. Carbohydrate Polymers, 166, 348-357. doi:10.1016/j.carbpol.2017.03.009 | es_ES |
dc.description.references | Debeaufort, F. (2000). Lipid hydrophobicity and physical state effects on the properties of bilayer edible films. Journal of Membrane Science, 180(1), 47-55. doi:10.1016/s0376-7388(00)00532-9 | es_ES |
dc.description.references | Ferreira, A. R. V., Torres, C. A. V., Freitas, F., Sevrin, C., Grandfils, C., Reis, M. A. M., … Coelhoso, I. M. (2016). Development and characterization of bilayer films of FucoPol and chitosan. Carbohydrate Polymers, 147, 8-15. doi:10.1016/j.carbpol.2016.03.089 | es_ES |
dc.description.references | Irissin-Mangata, J., Boutevin, B., & Bauduin, G. (1999). Bilayer films composed of wheat gluten and functionalized polyethylene: Permeability and other physical properties. Polymer Bulletin, 43(4-5), 441-448. doi:10.1007/s002890050633 | es_ES |
dc.description.references | Rešček, A., Kratofil Krehula, L., Katančić, Z., & Hrnjak-Murgić, Z. (2015). Active Bilayer PE/PCL Films for Food Packaging Modified with Zinc Oxide and Casein. Croatica Chemica Acta, 88(4), 461-473. doi:10.5562/cca2768 | es_ES |