- -

Combination of poly(lactic) acid (PLA) and starch to obtain biodegradable materials for food packaging

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Combination of poly(lactic) acid (PLA) and starch to obtain biodegradable materials for food packaging

Mostrar el registro completo del ítem

Muller, J.; González Martínez, MC.; Chiralt, A. (2017). Combination of poly(lactic) acid (PLA) and starch to obtain biodegradable materials for food packaging. Materials. 10(8):1-22. https://doi.org/10.3390/ma10080952

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148679

Ficheros en el ítem

Metadatos del ítem

Título: Combination of poly(lactic) acid (PLA) and starch to obtain biodegradable materials for food packaging
Autor: Muller, Justine González Martínez, María Consuelo Chiralt, A.
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] The massive use of synthetic plastics, in particular in the food packaging area, has a great environmental impact, and alternative more ecologic materials are being required. Poly(lactic) acid (PLA) and starch have ...[+]
Palabras clave: Poly(lactic) acid , Starch , Films , Blends , Multilayer , Food packaging , Mechanical properties , Barrier properties
Derechos de uso: Reconocimiento (by)
Fuente:
Materials. (eissn: 1996-1944 )
DOI: 10.3390/ma10080952
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ma10080952
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//GRISOLIA%2F2014%2F003/
info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/
info:eu-repo/grantAgreement/MINECO//AGL2013-42989-R/ES/NUEVOS MATERIALES BIODEGRADABLES MULTICAPA PARA ENVASADO ACTIVO DE ALIMENTOS SENSIBLES AL DETERIORO MICROBIANO Y%2FO OXIDATIVO/
Agradecimientos:
The authors thank the Ministerio de Economía y Competitividad (Spain) for the financial support provided through Project AGL2013-42989-R and AGL2016-76699-R. Author Justine Muller thanks the Generalitat Valènciana for the ...[+]
Tipo: Artículo

References

Plastic Europe—Association of Plastics Manufacturers, Plastic—The Facts 2016http://www.plasticseurope.org/Document/plastics---the-facts-2016-15787.aspx?FolID=2

Food Packaging Forum—Food Packaging Health, Food Packaging Materialshttp://www.foodpackagingforum.org/food-packaging-health/food-packaging-materials

Dossier—Bioplastics as Food Contact Materialshttp://www.foodpackagingforum.org/fpf-2016/wp-content/uploads/2015/11/FPF_Dossier06_Bioplastics.pdf [+]
Plastic Europe—Association of Plastics Manufacturers, Plastic—The Facts 2016http://www.plasticseurope.org/Document/plastics---the-facts-2016-15787.aspx?FolID=2

Food Packaging Forum—Food Packaging Health, Food Packaging Materialshttp://www.foodpackagingforum.org/food-packaging-health/food-packaging-materials

Dossier—Bioplastics as Food Contact Materialshttp://www.foodpackagingforum.org/fpf-2016/wp-content/uploads/2015/11/FPF_Dossier06_Bioplastics.pdf

Armentano, I., Bitinis, N., Fortunati, E., Mattioli, S., Rescignano, N., Verdejo, R., … Kenny, J. M. (2013). Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science, 38(10-11), 1720-1747. doi:10.1016/j.progpolymsci.2013.05.010

Auras, R., Harte, B., & Selke, S. (2004). An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience, 4(9), 835-864. doi:10.1002/mabi.200400043

Mattioli, S., Peltzer, M., Fortunati, E., Armentano, I., Jiménez, A., & Kenny, J. M. (2013). Structure, gas-barrier properties and overall migration of poly(lactic acid) films coated with hydrogenated amorphous carbon layers. Carbon, 63, 274-282. doi:10.1016/j.carbon.2013.06.080

Rhim, J.-W., Hong, S.-I., & Ha, C.-S. (2009). Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT - Food Science and Technology, 42(2), 612-617. doi:10.1016/j.lwt.2008.02.015

Fortunati, E., Aluigi, A., Armentano, I., Morena, F., Emiliani, C., Martino, S., … Puglia, D. (2015). Keratins extracted from Merino wool and Brown Alpaca fibres: Thermal, mechanical and biological properties of PLLA based biocomposites. Materials Science and Engineering: C, 47, 394-406. doi:10.1016/j.msec.2014.11.007

Gui, Z., Xu, Y., Gao, Y., Lu, C., & Cheng, S. (2012). Novel polyethylene glycol-based polyester-toughened polylactide. Materials Letters, 71, 63-65. doi:10.1016/j.matlet.2011.12.045

Rasal, R. M., Janorkar, A. V., & Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356. doi:10.1016/j.progpolymsci.2009.12.003

Hiljanen-Vainio, M., Varpomaa, P., Seppälä, J., & Törmälä, P. (1996). Modification of poly(L-lactides) by blending: mechanical and hydrolytic behavior. Macromolecular Chemistry and Physics, 197(4), 1503-1523. doi:10.1002/macp.1996.021970427

Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. doi:10.1016/j.progpolymsci.2008.05.004

González, A., & Alvarez Igarzabal, C. I. (2013). Soy protein – Poly (lactic acid) bilayer films as biodegradable material for active food packaging. Food Hydrocolloids, 33(2), 289-296. doi:10.1016/j.foodhyd.2013.03.010

Jamshidian, M., Tehrany, E. A., & Desobry, S. (2012). Antioxidants Release from Solvent-Cast PLA Film: Investigation of PLA Antioxidant-Active Packaging. Food and Bioprocess Technology, 6(6), 1450-1463. doi:10.1007/s11947-012-0830-9

Qin, Y., Yang, J., & Xue, J. (2014). Characterization of antimicrobial poly(lactic acid)/poly(trimethylene carbonate) films with cinnamaldehyde. Journal of Materials Science, 50(3), 1150-1158. doi:10.1007/s10853-014-8671-8

Ahmed, J., Hiremath, N., & Jacob, H. (2016). Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to InhibitStaphylococcus aureusandCampylobacter jejuni. Journal of Food Science, 81(2), E419-E429. doi:10.1111/1750-3841.13193

Hughes, J., Thomas, R., Byun, Y., & Whiteside, S. (2012). Improved flexibility of thermally stable poly-lactic acid (PLA). Carbohydrate Polymers, 88(1), 165-172. doi:10.1016/j.carbpol.2011.11.078

Özge Erdohan, Z., Çam, B., & Turhan, K. N. (2013). Characterization of antimicrobial polylactic acid based films. Journal of Food Engineering, 119(2), 308-315. doi:10.1016/j.jfoodeng.2013.05.043

Baiardo, M., Frisoni, G., Scandola, M., Rimelen, M., Lips, D., Ruffieux, K., & Wintermantel, E. (2003). Thermal and mechanical properties of plasticized poly(L-lactic acid). Journal of Applied Polymer Science, 90(7), 1731-1738. doi:10.1002/app.12549

Coltelli, M.-B., Maggiore, I. D., Bertoldo, M., Signori, F., Bronco, S., & Ciardelli, F. (2008). Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization. Journal of Applied Polymer Science, 110(2), 1250-1262. doi:10.1002/app.28512

Ljungberg, N., & Wesslén, B. (2002). The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). Journal of Applied Polymer Science, 86(5), 1227-1234. doi:10.1002/app.11077

Tee, Y. B., Talib, R. A., Abdan, K., Chin, N. L., Basha, R. K., & Yunos, K. F. M. (2014). Toughening Poly(Lactic Acid) and Aiding the Melt-compounding with Bio-sourced Plasticizers. Agriculture and Agricultural Science Procedia, 2, 289-295. doi:10.1016/j.aaspro.2014.11.041

Chieng, B. W., Ibrahim, N. A., Wan Yunus, W. M. Z., & Zobir Hussein, M. (2013). Plasticized poly(lactic acid) with low molecular weight poly(ethylene glycol): Mechanical, thermal, and morphology properties. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.39742

Choi, K., Choi, M.-C., Han, D.-H., Park, T.-S., & Ha, C.-S. (2013). Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending. European Polymer Journal, 49(8), 2356-2364. doi:10.1016/j.eurpolymj.2013.05.027

Pluta, M., Paul, M.-A., Alexandre, M., & Dubois, P. (2005). Plasticized polylactide/clay nanocomposites. I. The role of filler content and its surface organo-modification on the physico-chemical properties. Journal of Polymer Science Part B: Polymer Physics, 44(2), 299-311. doi:10.1002/polb.20694

Martínez-Abad, A., Lagarón, J. M., & Ocio, M. J. (2014). Antimicrobial beeswax coated polylactide films with silver control release capacity. International Journal of Food Microbiology, 174, 39-46. doi:10.1016/j.ijfoodmicro.2013.12.028

Bonilla, J., Fortunati, E., Vargas, M., Chiralt, A., & Kenny, J. M. (2013). Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. Journal of Food Engineering, 119(2), 236-243. doi:10.1016/j.jfoodeng.2013.05.026

Muller, J., Jiménez, A., González-Martínez, C., & Chiralt, A. (2016). Influence of plasticizers on thermal properties and crystallization behaviour of poly(lactic acid) films obtained by compression moulding. Polymer International, 65(8), 970-978. doi:10.1002/pi.5142

Rocca-Smith, J. R., Karbowiak, T., Marcuzzo, E., Sensidoni, A., Piasente, F., Champion, D., … Debeaufort, F. (2016). Impact of corona treatment on PLA film properties. Polymer Degradation and Stability, 132, 109-116. doi:10.1016/j.polymdegradstab.2016.03.020

Arrieta, M. P., Fortunati, E., Dominici, F., López, J., & Kenny, J. M. (2015). Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 121, 265-275. doi:10.1016/j.carbpol.2014.12.056

Pivsa-Art, W., Pavasupree, S., O-Charoen, N., Insuan, U., Jailak, P., & Pivsa-Art, S. (2011). Preparation of Polymer Blends Between Poly (L-Lactic Acid), Poly (Butylene Succinate-Co-Adipate) and Poly (Butylene Adipate-Co-Terephthalate) for Blow Film Industrial Application. Energy Procedia, 9, 581-588. doi:10.1016/j.egypro.2011.09.068

Qin, Y., Liu, D., Wu, Y., Yuan, M., Li, L., & Yang, J. (2015). Effect of PLA/PCL/cinnamaldehyde antimicrobial packaging on physicochemical and microbial quality of button mushroom (Agaricus bisporus). Postharvest Biology and Technology, 99, 73-79. doi:10.1016/j.postharvbio.2014.07.018

Fortunati, E., Puglia, D., Iannoni, A., Terenzi, A., Kenny, J. M., & Torre, L. (2017). Processing Conditions, Thermal and Mechanical Responses of Stretchable Poly (Lactic Acid)/Poly (Butylene Succinate) Films. Materials, 10(7), 809. doi:10.3390/ma10070809

Acioli-Moura, R., & Sun, X. S. (2008). Thermal degradation and physical aging of poly(lactic acid) and its blends with starch. Polymer Engineering & Science, 48(4), 829-836. doi:10.1002/pen.21019

B., A., Suin, S., & Khatua, B. B. (2014). Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly (lactic acid)(PLA)/clay nanocomposites using unmodified nanoclay. Carbohydrate Polymers, 110, 430-439. doi:10.1016/j.carbpol.2014.04.024

Bie, P., Liu, P., Yu, L., Li, X., Chen, L., & Xie, F. (2013). The properties of antimicrobial films derived from poly(lactic acid)/starch/chitosan blended matrix. Carbohydrate Polymers, 98(1), 959-966. doi:10.1016/j.carbpol.2013.07.004

Huneault, M. A., & Li, H. (2007). Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer, 48(1), 270-280. doi:10.1016/j.polymer.2006.11.023

Hwang, S. W., Lee, S. B., Lee, C. K., Lee, J. Y., Shim, J. K., Selke, S. E. M., … Auras, R. (2012). Grafting of maleic anhydride on poly(L-lactic acid). Effects on physical and mechanical properties. Polymer Testing, 31(2), 333-344. doi:10.1016/j.polymertesting.2011.12.005

Jariyasakoolroj, P., & Chirachanchai, S. (2014). Silane modified starch for compatible reactive blend with poly(lactic acid). Carbohydrate Polymers, 106, 255-263. doi:10.1016/j.carbpol.2014.02.018

Le Bolay, N., Lamure, A., Gallego Leis, N., & Subhani, A. (2012). How to combine a hydrophobic matrix and a hydrophilic filler without adding a compatibilizer – Co-grinding enhances use properties of Renewable PLA–starch composites. Chemical Engineering and Processing: Process Intensification, 56, 1-9. doi:10.1016/j.cep.2012.03.005

Phetwarotai, W., Potiyaraj, P., & Aht-Ong, D. (2012). Characteristics of biodegradable polylactide/gelatinized starch films: Effects of starch, plasticizer, and compatibilizer. Journal of Applied Polymer Science, 126(S1), E162-E172. doi:10.1002/app.36736

Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydrate Polymers, 146, 36-45. doi:10.1016/j.carbpol.2016.03.051

Teixeira, E. de M., Curvelo, A. A. S., Corrêa, A. C., Marconcini, J. M., Glenn, G. M., & Mattoso, L. H. C. (2012). Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Industrial Crops and Products, 37(1), 61-68. doi:10.1016/j.indcrop.2011.11.036

Wang, H., Sun, X., & Seib, P. (2002). Mechanical properties of poly(lactic acid) and wheat starch blends with methylenediphenyl diisocyanate. Journal of Applied Polymer Science, 84(6), 1257-1262. doi:10.1002/app.10457

Wang, N., Yu, J., Chang, P. R., & Ma, X. (2007). Influence of Citric Acid on the Properties of Glycerol-plasticized dry Starch (DTPS) and DTPS/Poly(lactic acid) Blends. Starch - Stärke, 59(9), 409-417. doi:10.1002/star.200700617

Wokadala, O. C., Emmambux, N. M., & Ray, S. S. (2014). Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch. Carbohydrate Polymers, 112, 216-224. doi:10.1016/j.carbpol.2014.05.095

Xiong, Z., Zhang, L., Ma, S., Yang, Y., Zhang, C., Tang, Z., & Zhu, J. (2013). Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends. Carbohydrate Polymers, 94(1), 235-243. doi:10.1016/j.carbpol.2013.01.038

Yokesahachart, C., & Yoksan, R. (2011). Effect of amphiphilic molecules on characteristics and tensile properties of thermoplastic starch and its blends with poly(lactic acid). Carbohydrate Polymers, 83(1), 22-31. doi:10.1016/j.carbpol.2010.07.020

L’amidon et le PLA: Deux Biopolymères sur le Marché, Note de Synthèse 18 Janvier 2011http://www.valbiom.be/files/library/Docs/Biopolymeres/amidonpla20111297333283.pdf

Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2010). Development of Edible Films and Coatings with Antimicrobial Activity. Food and Bioprocess Technology, 4(6), 849-875. doi:10.1007/s11947-010-0434-1

Durrani, C. M., & Donald, A. M. (1995). Physical characterisation of amylopectin gels. Polymer Gels and Networks, 3(1), 1-27. doi:10.1016/0966-7822(94)00005-r

Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Effect of the incorporation of surfactants on the physical properties of corn starch films. Food Hydrocolloids, 38, 66-75. doi:10.1016/j.foodhyd.2013.11.011

Acosta, S., Jiménez, A., Cháfer, M., González-Martínez, C., & Chiralt, A. (2015). Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocolloids, 49, 135-143. doi:10.1016/j.foodhyd.2015.03.015

Souza, A. C., Goto, G. E. O., Mainardi, J. A., Coelho, A. C. V., & Tadini, C. C. (2013). Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. LWT - Food Science and Technology, 54(2), 346-352. doi:10.1016/j.lwt.2013.06.017

CHAKRABORTY, S., SAHOO, B., TERAOKA, I., & GROSS, R. (2005). Solution properties of starch nanoparticles in water and DMSO as studied by dynamic light scattering. Carbohydrate Polymers, 60(4), 475-481. doi:10.1016/j.carbpol.2005.03.011

Moreno, O., Pastor, C., Muller, J., Atarés, L., González, C., & Chiralt, A. (2014). Physical and bioactive properties of corn starch – Buttermilk edible films. Journal of Food Engineering, 141, 27-36. doi:10.1016/j.jfoodeng.2014.05.015

Shirai, M. A., Grossmann, M. V. E., Mali, S., Yamashita, F., Garcia, P. S., & Müller, C. M. O. (2013). Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydrate Polymers, 92(1), 19-22. doi:10.1016/j.carbpol.2012.09.038

Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydrate Polymers, 109, 155-165. doi:10.1016/j.carbpol.2014.03.059

Versino, F., López, O. V., & García, M. A. (2015). Sustainable use of cassava ( Manihot esculenta ) roots as raw material for biocomposites development. Industrial Crops and Products, 65, 79-89. doi:10.1016/j.indcrop.2014.11.054

Lopez, O., Garcia, M. A., Villar, M. A., Gentili, A., Rodriguez, M. S., & Albertengo, L. (2014). Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT - Food Science and Technology, 57(1), 106-115. doi:10.1016/j.lwt.2014.01.024

Tai, N. L., Adhikari, R., Shanks, R., & Adhikari, B. (2017). Flexible starch-polyurethane films: Physiochemical characteristics and hydrophobicity. Carbohydrate Polymers, 163, 236-246. doi:10.1016/j.carbpol.2017.01.082

Jiménez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and Biodegradable Starch Films: A Review. Food and Bioprocess Technology, 5(6), 2058-2076. doi:10.1007/s11947-012-0835-4

Cano, A., Cháfer, M., Chiralt, A., & González-Martínez, C. (2016). Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packaging and Shelf Life, 10, 16-24. doi:10.1016/j.fpsl.2016.07.002

Castillo, L., López, O., López, C., Zaritzky, N., García, M. A., Barbosa, S., & Villar, M. (2013). Thermoplastic starch films reinforced with talc nanoparticles. Carbohydrate Polymers, 95(2), 664-674. doi:10.1016/j.carbpol.2013.03.026

García, L., Cova, A., Sandoval, A. J., Müller, A. J., & Carrasquel, L. M. (2012). Glass transition temperatures of cassava starch–whey protein concentrate systems at low and intermediate water content. Carbohydrate Polymers, 87(2), 1375-1382. doi:10.1016/j.carbpol.2011.09.035

Ortega-Toro, R., Morey, I., Talens, P., & Chiralt, A. (2015). Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydrate Polymers, 127, 282-290. doi:10.1016/j.carbpol.2015.03.080

Kalichevsky, M. T., & Blanshard, J. M. V. (1993). The effect of fructose and water on the glass transition of amylopectin. Carbohydrate Polymers, 20(2), 107-113. doi:10.1016/0144-8617(93)90085-i

Mathew, A. P., & Dufresne, A. (2002). Plasticized Waxy Maize Starch: Effect of Polyols and Relative Humidity on Material Properties. Biomacromolecules, 3(5), 1101-1108. doi:10.1021/bm020065p

ROZ, A., CARVALHO, A., GANDINI, A., & CURVELO, A. (2006). The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydrate Polymers, 63(3), 417-424. doi:10.1016/j.carbpol.2005.09.017

Huang, M., Yu, J., & Ma, X. (2005). Ethanolamine as a novel plasticiser for thermoplastic starch. Polymer Degradation and Stability, 90(3), 501-507. doi:10.1016/j.polymdegradstab.2005.04.005

Ma, X., & Yu, J. (2004). Formamide as the plasticizer for thermoplastic starch. Journal of Applied Polymer Science, 93(4), 1769-1773. doi:10.1002/app.20628

Perry, P. A., & Donald, A. M. (2000). The Role of Plasticization in Starch Granule Assembly. Biomacromolecules, 1(3), 424-432. doi:10.1021/bm0055145

Bastos, D. C., Santos, A. E. F., da Silva, M. L. V. J., & Simão, R. A. (2009). Hydrophobic corn starch thermoplastic films produced by plasma treatment. Ultramicroscopy, 109(8), 1089-1093. doi:10.1016/j.ultramic.2009.03.031

Turalija, M., Bischof, S., Budimir, A., & Gaan, S. (2016). Antimicrobial PLA films from environment friendly additives. Composites Part B: Engineering, 102, 94-99. doi:10.1016/j.compositesb.2016.07.017

Commission Communication on the Results of the Risk Evaluation and the Risk Reduction Strategies for the Substances: Piperazine; Cyclohexane; Methylenediphenyl Diisocyanate; But-2yne-1,4-diol; Methyloxirane; Aniline; 2-Ethylhexylacrylate; 1,4-Dichlorobenzene; 3,5-dinitro-2,6-dimethyl-4-tert- butylacetophenone; Di-(2-ethylhexyl)phthalate; Phenol; 5-tert-butyl-2,4,6-trinitro-m-xylenehttp://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52008XC0207(02)

Abdillahi, H., Chabrat, E., Rouilly, A., & Rigal, L. (2013). Influence of citric acid on thermoplastic wheat flour/poly(lactic acid) blends. II. Barrier properties and water vapor sorption isotherms. Industrial Crops and Products, 50, 104-111. doi:10.1016/j.indcrop.2013.06.028

Bocz, K., Szolnoki, B., Marosi, A., Tábi, T., Wladyka-Przybylak, M., & Marosi, G. (2014). Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system. Polymer Degradation and Stability, 106, 63-73. doi:10.1016/j.polymdegradstab.2013.10.025

Cai, J., Liu, M., Wang, L., Yao, K., Li, S., & Xiong, H. (2011). Isothermal crystallization kinetics of thermoplastic starch/poly(lactic acid) composites. Carbohydrate Polymers, 86(2), 941-947. doi:10.1016/j.carbpol.2011.05.044

Orozco, V. H., Brostow, W., Chonkaew, W., & López, B. L. (2009). Preparation and Characterization of Poly(Lactic Acid)-g-Maleic Anhydride + Starch Blends. Macromolecular Symposia, 277(1), 69-80. doi:10.1002/masy.200950309

Ren, J., Fu, H., Ren, T., & Yuan, W. (2009). Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbohydrate Polymers, 77(3), 576-582. doi:10.1016/j.carbpol.2009.01.024

Soares, F. C., Yamashita, F., Müller, C. M. O., & Pires, A. T. N. (2013). Thermoplastic starch/poly(lactic acid) sheets coated with cross-linked chitosan. Polymer Testing, 32(1), 94-98. doi:10.1016/j.polymertesting.2012.09.005

Wang, N., Yu, J., Chang, P. R., & Ma, X. (2008). Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends. Carbohydrate Polymers, 71(1), 109-118. doi:10.1016/j.carbpol.2007.05.025

Xiong, Z., Yang, Y., Feng, J., Zhang, X., Zhang, C., Tang, Z., & Zhu, J. (2013). Preparation and characterization of poly(lactic acid)/starch composites toughened with epoxidized soybean oil. Carbohydrate Polymers, 92(1), 810-816. doi:10.1016/j.carbpol.2012.09.007

Xiong, Z., Li, C., Ma, S., Feng, J., Yang, Y., Zhang, R., & Zhu, J. (2013). The properties of poly(lactic acid)/starch blends with a functionalized plant oil: Tung oil anhydride. Carbohydrate Polymers, 95(1), 77-84. doi:10.1016/j.carbpol.2013.02.054

Xiong, Z., Ma, S., Fan, L., Tang, Z., Zhang, R., Na, H., & Zhu, J. (2014). Surface hydrophobic modification of starch with bio-based epoxy resins to fabricate high-performance polylactide composite materials. Composites Science and Technology, 94, 16-22. doi:10.1016/j.compscitech.2014.01.007

Zuo, Y., Gu, J., Yang, L., Qiao, Z., Tan, H., & Zhang, Y. (2014). Preparation and characterization of dry method esterified starch/polylactic acid composite materials. International Journal of Biological Macromolecules, 64, 174-180. doi:10.1016/j.ijbiomac.2013.11.026

Muller, J., González-Martínez, C., & Chiralt, A. (2017). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95, 56-70. doi:10.1016/j.eurpolymj.2017.07.019

Svagan, A. J., Åkesson, A., Cárdenas, M., Bulut, S., Knudsen, J. C., Risbo, J., & Plackett, D. (2012). Transparent Films Based on PLA and Montmorillonite with Tunable Oxygen Barrier Properties. Biomacromolecules, 13(2), 397-405. doi:10.1021/bm201438m

Wang, X., Du, Y., & Luo, J. (2008). Biopolymer/montmorillonite nanocomposite: preparation, drug-controlled release property and cytotoxicity. Nanotechnology, 19(6), 065707. doi:10.1088/0957-4484/19/6/065707

Requena, R., Jiménez, A., Vargas, M., & Chiralt, A. (2016). Poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] active bilayer films obtained by compression moulding and applying essential oils at the interface. Polymer International, 65(8), 883-891. doi:10.1002/pi.5091

Rhim, J.-W., Lee, J. H., & Ng, P. K. W. (2007). Mechanical and barrier properties of biodegradable soy protein isolate-based films coated with polylactic acid. LWT - Food Science and Technology, 40(2), 232-238. doi:10.1016/j.lwt.2005.10.002

Martucci, J. F., & Ruseckaite, R. A. (2010). Three-layer sheets based on gelatin and poly(lactic acid), part 1: Preparation and properties. Journal of Applied Polymer Science, 118(5), 3102-3110. doi:10.1002/app.32751

Bonifacio, M. A., Cometa, S., Dicarlo, M., Baruzzi, F., de Candia, S., Gloria, A., … De Giglio, E. (2017). Gallium-modified chitosan/poly(acrylic acid) bilayer coatings for improved titanium implant performances. Carbohydrate Polymers, 166, 348-357. doi:10.1016/j.carbpol.2017.03.009

Debeaufort, F. (2000). Lipid hydrophobicity and physical state effects on the properties of bilayer edible films. Journal of Membrane Science, 180(1), 47-55. doi:10.1016/s0376-7388(00)00532-9

Ferreira, A. R. V., Torres, C. A. V., Freitas, F., Sevrin, C., Grandfils, C., Reis, M. A. M., … Coelhoso, I. M. (2016). Development and characterization of bilayer films of FucoPol and chitosan. Carbohydrate Polymers, 147, 8-15. doi:10.1016/j.carbpol.2016.03.089

Irissin-Mangata, J., Boutevin, B., & Bauduin, G. (1999). Bilayer films composed of wheat gluten and functionalized polyethylene: Permeability and other physical properties. Polymer Bulletin, 43(4-5), 441-448. doi:10.1007/s002890050633

Rešček, A., Kratofil Krehula, L., Katančić, Z., & Hrnjak-Murgić, Z. (2015). Active Bilayer PE/PCL Films for Food Packaging Modified with Zinc Oxide and Casein. Croatica Chemica Acta, 88(4), 461-473. doi:10.5562/cca2768

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem