- -

Developing Computational Fluid Dynamics (CFD) Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Developing Computational Fluid Dynamics (CFD) Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fernández-Yáñez, Pablo es_ES
dc.contributor.author Armas Vergel, O. es_ES
dc.contributor.author Gómez, Arántzazu es_ES
dc.contributor.author Gil, A. es_ES
dc.date.accessioned 2020-07-30T03:33:42Z
dc.date.available 2020-07-30T03:33:42Z
dc.date.issued 2017-06-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148857
dc.description.abstract [EN] Around a third of the energy input in an automotive engine is wasted through the exhaust system. Since numerous technologies to harvest energy from exhaust gases are accessible, it is of great interest to find time- and cost-efficient methods to evaluate available thermal energy under different engine conditions. Computational fluid dynamics (CFD) is becoming a very valuable tool for numerical predictions of exhaust flows. In this work, a methodology to build a simple three-dimensional (3D) model of the exhaust system of automotive internal combustion engines (ICE) was developed. Experimental data of exhaust gas in the most used part of the engine map in passenger diesel vehicles were employed as input for calculations. Sensitivity analyses of different numeric schemes have been conducted in order to attain accurate results. The model built allows for obtaining details on temperature and pressure fields along the exhaust system, and for complementing the experimental results for a better understanding of the flow phenomena and heat transfer through the system for further energy recovery devices. es_ES
dc.description.sponsorship Authors wish to thank the financial support provided by the Spanish Ministry of Economy and Competitiveness to the project POWER Ref. ENE2014-57043-R and Universidad de Castilla-la Mancha for the pre-doctoral funding [2015/4062]. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject CFD (computational fluid dynamics) es_ES
dc.subject Model es_ES
dc.subject Exhaust es_ES
dc.subject Diesel es_ES
dc.subject Engine es_ES
dc.subject Energy recovery es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Developing Computational Fluid Dynamics (CFD) Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app7060590 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2014-57043-R/ES/POTENCIAL DE RECUPERACION DE ENERGIAS RESIDUALES EN MOTORES DE COMBUSTION INTERNA. IMPLICACIONES ENERGETICAS Y MEDIOAMBIENTALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UCLM//2015%2F4062/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Fernández-Yáñez, P.; Armas Vergel, O.; Gómez, A.; Gil, A. (2017). Developing Computational Fluid Dynamics (CFD) Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles. Applied Sciences. 7(6):1-20. https://doi.org/10.3390/app7060590 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app7060590 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 20 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 6 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\344597 es_ES
dc.contributor.funder Universidad de Castilla-La Mancha es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Hossain, S. N., & Bari, S. (2014). Waste Heat Recovery from Exhaust of a Diesel Generator Set Using Organic Fluids. Procedia Engineering, 90, 439-444. doi:10.1016/j.proeng.2014.11.753 es_ES
dc.description.references Galindo, J., Dolz, V., Royo-Pascual, L., Haller, R., & Melis, J. (2016). Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol. Energies, 9(4), 279. doi:10.3390/en9040279 es_ES
dc.description.references Zhang, X., & Romzek, M. (2008). Computational Fluid Dynamics (CFD) Applications in Vehicle Exhaust System. SAE Technical Paper Series. doi:10.4271/2008-01-0612 es_ES
dc.description.references Konstantinidis, P. A., Koltsakis, G. C., & Stamatelos, A. M. (1997). Transient heat transfer modelling in automotive exhaust systems. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 211(1), 1-15. doi:10.1243/0954406971521610 es_ES
dc.description.references Kandylas, I. P., & Stamatelos, A. M. (1999). Engine exhaust system design based on heat transfer computation. Energy Conversion and Management, 40(10), 1057-1072. doi:10.1016/s0196-8904(99)00008-4 es_ES
dc.description.references Guardiola, C., Dolz, V., Pla, B., & Mora, J. (2016). Fast estimation of diesel oxidation catalysts inlet gas temperature. Control Engineering Practice, 56, 148-156. doi:10.1016/j.conengprac.2016.08.020 es_ES
dc.description.references Shayler, P. J., Hayden, D. J., & Ma, T. (1999). Exhaust System Heat Transfer and Catalytic Converter Performance. SAE Technical Paper Series. doi:10.4271/1999-01-0453 es_ES
dc.description.references Kapparos, D. J., Foster, D. E., & Rutland, C. J. (2004). Sensitivity Analysis of a Diesel Exhaust System Thermal Model. SAE Technical Paper Series. doi:10.4271/2004-01-1131 es_ES
dc.description.references Fu, H., Chen, X., Shilling, I., & Richardson, S. (2005). A One-Dimensional Model for Heat Transfer in Engine Exhaust Systems. SAE Technical Paper Series. doi:10.4271/2005-01-0696 es_ES
dc.description.references Fortunato, F., Caprio, M., Oliva, P., D’Aniello, G., Pantaleone, P., Andreozzi, A., & Manca, O. (2007). Numerical and Experimental Investigation of the Thermal Behavior of a Complete Exhaust System. SAE Technical Paper Series. doi:10.4271/2007-01-1094 es_ES
dc.description.references Liu, X., Deng, Y. D., Zhang, K., Xu, M., Xu, Y., & Su, C. Q. (2014). Experiments and simulations on heat exchangers in thermoelectric generator for automotive application. Applied Thermal Engineering, 71(1), 364-370. doi:10.1016/j.applthermaleng.2014.07.022 es_ES
dc.description.references Hamedi, M. R., Tsolakis, A., & Herreros, J. M. (2014). Thermal Performance of Diesel Aftertreatment: Material and Insulation CFD Analysis. SAE Technical Paper Series. doi:10.4271/2014-01-2818 es_ES
dc.description.references Voltz, S. E., Morgan, C. R., Liederman, D., & Jacob, S. M. (1973). Kinetic Study of Carbon Monoxide and Propylene Oxidation on Platinum Catalysts. Industrial & Engineering Chemistry Product Research and Development, 12(4), 294-301. doi:10.1021/i360048a006 es_ES
dc.description.references Oh, S. H., & Cavendish, J. C. (1982). Transients of monolithic catalytic converters. Response to step changes in feedstream temperature as related to controlling automobile emissions. Industrial & Engineering Chemistry Product Research and Development, 21(1), 29-37. doi:10.1021/i300005a006 es_ES
dc.description.references Dubien, C., Schweich, D., Mabilon, G., Martin, B., & Prigent, M. (1998). Three-way catalytic converter modelling: fast- and slow-oxidizing hydrocarbons, inhibiting species, and steam-reforming reaction. Chemical Engineering Science, 53(3), 471-481. doi:10.1016/s0009-2509(97)00313-8 es_ES
dc.description.references Koltsakis, G. C., Konstantinidis, P. A., & Stamatelos, A. M. (1997). Development and application range of mathematical models for 3-way catalytic converters. Applied Catalysis B: Environmental, 12(2-3), 161-191. doi:10.1016/s0926-3373(96)00073-2 es_ES
dc.description.references Wurzenberger, J. C., Wanker, R., & Schüßler, M. (2008). Simulation of Exhaust Gas Aftertreatment Systems - Thermal Behavior During Different Operating Conditions. SAE Technical Paper Series. doi:10.4271/2008-01-0865 es_ES
dc.description.references Guojiang, W., & Song, T. (2005). CFD simulation of the effect of upstream flow distribution on the light-off performance of a catalytic converter. Energy Conversion and Management, 46(13-14), 2010-2031. doi:10.1016/j.enconman.2004.11.001 es_ES
dc.description.references Hayes, R. E., Fadic, A., Mmbaga, J., & Najafi, A. (2012). CFD modelling of the automotive catalytic converter. Catalysis Today, 188(1), 94-105. doi:10.1016/j.cattod.2012.03.015 es_ES
dc.description.references Chatterjee, D., Deutschmann, O., & Warnatz, Jã¼. (2001). Detailed surface reaction mechanism in a three-way catalyst. Faraday Discussions, 119(1), 371-384. doi:10.1039/b101968f es_ES
dc.description.references Kumar, R., Sonthalia, A., & Goel, R. (2011). Experimental study on waste heat recovery from an IC engine using thermoelectric technology. Thermal Science, 15(4), 1011-1022. doi:10.2298/tsci100518053k es_ES
dc.description.references Pong, H., Wallace, J., & Sullivan, P. E. (2012). Modeling of Exhaust Gas Treatment for Stationary Applications. SAE Technical Paper Series. doi:10.4271/2012-01-1300 es_ES
dc.description.references Cárdenas, M. D., Armas, O., Mata, C., & Soto, F. (2016). Performance and pollutant emissions from transient operation of a common rail diesel engine fueled with different biodiesel fuels. Fuel, 185, 743-762. doi:10.1016/j.fuel.2016.08.002 es_ES
dc.description.references Andrade, J. S., Costa, U. M. S., Almeida, M. P., Makse, H. A., & Stanley, H. E. (1999). Inertial Effects on Fluid Flow through Disordered Porous Media. Physical Review Letters, 82(26), 5249-5252. doi:10.1103/physrevlett.82.5249 es_ES
dc.description.references Benjamin, S. F., Liu, Z., & Roberts, C. A. (2004). Automotive catalyst design for uniform conversion efficiency. Applied Mathematical Modelling, 28(6), 559-572. doi:10.1016/j.apm.2003.10.008 es_ES
dc.description.references Mladenov, N., Koop, J., Tischer, S., & Deutschmann, O. (2010). Modeling of transport and chemistry in channel flows of automotive catalytic converters. Chemical Engineering Science, 65(2), 812-826. doi:10.1016/j.ces.2009.09.034 es_ES
dc.description.references Patankar, S. ., & Spalding, D. . (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15(10), 1787-1806. doi:10.1016/0017-9310(72)90054-3 es_ES
dc.description.references Shih, T.-H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, 24(3), 227-238. doi:10.1016/0045-7930(94)00032-t es_ES
dc.description.references Agudelo, A. F., García-Contreras, R., Agudelo, J. R., & Armas, O. (2016). Potential for exhaust gas energy recovery in a diesel passenger car under European driving cycle. Applied Energy, 174, 201-212. doi:10.1016/j.apenergy.2016.04.092 es_ES
dc.description.references Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289. doi:10.1016/0045-7825(74)90029-2 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem