- -

Developing Computational Fluid Dynamics (CFD) Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Developing Computational Fluid Dynamics (CFD) Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles

Mostrar el registro completo del ítem

Fernández-Yáñez, P.; Armas Vergel, O.; Gómez, A.; Gil, A. (2017). Developing Computational Fluid Dynamics (CFD) Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles. Applied Sciences. 7(6):1-20. https://doi.org/10.3390/app7060590

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148857

Ficheros en el ítem

Metadatos del ítem

Título: Developing Computational Fluid Dynamics (CFD) Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles
Autor: Fernández-Yáñez, Pablo Armas Vergel, O. Gómez, Arántzazu Gil, A.
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Around a third of the energy input in an automotive engine is wasted through the exhaust system. Since numerous technologies to harvest energy from exhaust gases are accessible, it is of great interest to find time- ...[+]
Palabras clave: CFD (computational fluid dynamics) , Model , Exhaust , Diesel , Engine , Energy recovery
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app7060590
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app7060590
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//ENE2014-57043-R/ES/POTENCIAL DE RECUPERACION DE ENERGIAS RESIDUALES EN MOTORES DE COMBUSTION INTERNA. IMPLICACIONES ENERGETICAS Y MEDIOAMBIENTALES/
info:eu-repo/grantAgreement/UCLM//2015%2F4062/
Agradecimientos:
Authors wish to thank the financial support provided by the Spanish Ministry of Economy and Competitiveness to the project POWER Ref. ENE2014-57043-R and Universidad de Castilla-la Mancha for the pre-doctoral funding [2015/4062].[+]
Tipo: Artículo

References

Hossain, S. N., & Bari, S. (2014). Waste Heat Recovery from Exhaust of a Diesel Generator Set Using Organic Fluids. Procedia Engineering, 90, 439-444. doi:10.1016/j.proeng.2014.11.753

Galindo, J., Dolz, V., Royo-Pascual, L., Haller, R., & Melis, J. (2016). Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol. Energies, 9(4), 279. doi:10.3390/en9040279

Zhang, X., & Romzek, M. (2008). Computational Fluid Dynamics (CFD) Applications in Vehicle Exhaust System. SAE Technical Paper Series. doi:10.4271/2008-01-0612 [+]
Hossain, S. N., & Bari, S. (2014). Waste Heat Recovery from Exhaust of a Diesel Generator Set Using Organic Fluids. Procedia Engineering, 90, 439-444. doi:10.1016/j.proeng.2014.11.753

Galindo, J., Dolz, V., Royo-Pascual, L., Haller, R., & Melis, J. (2016). Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol. Energies, 9(4), 279. doi:10.3390/en9040279

Zhang, X., & Romzek, M. (2008). Computational Fluid Dynamics (CFD) Applications in Vehicle Exhaust System. SAE Technical Paper Series. doi:10.4271/2008-01-0612

Konstantinidis, P. A., Koltsakis, G. C., & Stamatelos, A. M. (1997). Transient heat transfer modelling in automotive exhaust systems. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 211(1), 1-15. doi:10.1243/0954406971521610

Kandylas, I. P., & Stamatelos, A. M. (1999). Engine exhaust system design based on heat transfer computation. Energy Conversion and Management, 40(10), 1057-1072. doi:10.1016/s0196-8904(99)00008-4

Guardiola, C., Dolz, V., Pla, B., & Mora, J. (2016). Fast estimation of diesel oxidation catalysts inlet gas temperature. Control Engineering Practice, 56, 148-156. doi:10.1016/j.conengprac.2016.08.020

Shayler, P. J., Hayden, D. J., & Ma, T. (1999). Exhaust System Heat Transfer and Catalytic Converter Performance. SAE Technical Paper Series. doi:10.4271/1999-01-0453

Kapparos, D. J., Foster, D. E., & Rutland, C. J. (2004). Sensitivity Analysis of a Diesel Exhaust System Thermal Model. SAE Technical Paper Series. doi:10.4271/2004-01-1131

Fu, H., Chen, X., Shilling, I., & Richardson, S. (2005). A One-Dimensional Model for Heat Transfer in Engine Exhaust Systems. SAE Technical Paper Series. doi:10.4271/2005-01-0696

Fortunato, F., Caprio, M., Oliva, P., D’Aniello, G., Pantaleone, P., Andreozzi, A., & Manca, O. (2007). Numerical and Experimental Investigation of the Thermal Behavior of a Complete Exhaust System. SAE Technical Paper Series. doi:10.4271/2007-01-1094

Liu, X., Deng, Y. D., Zhang, K., Xu, M., Xu, Y., & Su, C. Q. (2014). Experiments and simulations on heat exchangers in thermoelectric generator for automotive application. Applied Thermal Engineering, 71(1), 364-370. doi:10.1016/j.applthermaleng.2014.07.022

Hamedi, M. R., Tsolakis, A., & Herreros, J. M. (2014). Thermal Performance of Diesel Aftertreatment: Material and Insulation CFD Analysis. SAE Technical Paper Series. doi:10.4271/2014-01-2818

Voltz, S. E., Morgan, C. R., Liederman, D., & Jacob, S. M. (1973). Kinetic Study of Carbon Monoxide and Propylene Oxidation on Platinum Catalysts. Industrial & Engineering Chemistry Product Research and Development, 12(4), 294-301. doi:10.1021/i360048a006

Oh, S. H., & Cavendish, J. C. (1982). Transients of monolithic catalytic converters. Response to step changes in feedstream temperature as related to controlling automobile emissions. Industrial & Engineering Chemistry Product Research and Development, 21(1), 29-37. doi:10.1021/i300005a006

Dubien, C., Schweich, D., Mabilon, G., Martin, B., & Prigent, M. (1998). Three-way catalytic converter modelling: fast- and slow-oxidizing hydrocarbons, inhibiting species, and steam-reforming reaction. Chemical Engineering Science, 53(3), 471-481. doi:10.1016/s0009-2509(97)00313-8

Koltsakis, G. C., Konstantinidis, P. A., & Stamatelos, A. M. (1997). Development and application range of mathematical models for 3-way catalytic converters. Applied Catalysis B: Environmental, 12(2-3), 161-191. doi:10.1016/s0926-3373(96)00073-2

Wurzenberger, J. C., Wanker, R., & Schüßler, M. (2008). Simulation of Exhaust Gas Aftertreatment Systems - Thermal Behavior During Different Operating Conditions. SAE Technical Paper Series. doi:10.4271/2008-01-0865

Guojiang, W., & Song, T. (2005). CFD simulation of the effect of upstream flow distribution on the light-off performance of a catalytic converter. Energy Conversion and Management, 46(13-14), 2010-2031. doi:10.1016/j.enconman.2004.11.001

Hayes, R. E., Fadic, A., Mmbaga, J., & Najafi, A. (2012). CFD modelling of the automotive catalytic converter. Catalysis Today, 188(1), 94-105. doi:10.1016/j.cattod.2012.03.015

Chatterjee, D., Deutschmann, O., & Warnatz, Jã¼. (2001). Detailed surface reaction mechanism in a three-way catalyst. Faraday Discussions, 119(1), 371-384. doi:10.1039/b101968f

Kumar, R., Sonthalia, A., & Goel, R. (2011). Experimental study on waste heat recovery from an IC engine using thermoelectric technology. Thermal Science, 15(4), 1011-1022. doi:10.2298/tsci100518053k

Pong, H., Wallace, J., & Sullivan, P. E. (2012). Modeling of Exhaust Gas Treatment for Stationary Applications. SAE Technical Paper Series. doi:10.4271/2012-01-1300

Cárdenas, M. D., Armas, O., Mata, C., & Soto, F. (2016). Performance and pollutant emissions from transient operation of a common rail diesel engine fueled with different biodiesel fuels. Fuel, 185, 743-762. doi:10.1016/j.fuel.2016.08.002

Andrade, J. S., Costa, U. M. S., Almeida, M. P., Makse, H. A., & Stanley, H. E. (1999). Inertial Effects on Fluid Flow through Disordered Porous Media. Physical Review Letters, 82(26), 5249-5252. doi:10.1103/physrevlett.82.5249

Benjamin, S. F., Liu, Z., & Roberts, C. A. (2004). Automotive catalyst design for uniform conversion efficiency. Applied Mathematical Modelling, 28(6), 559-572. doi:10.1016/j.apm.2003.10.008

Mladenov, N., Koop, J., Tischer, S., & Deutschmann, O. (2010). Modeling of transport and chemistry in channel flows of automotive catalytic converters. Chemical Engineering Science, 65(2), 812-826. doi:10.1016/j.ces.2009.09.034

Patankar, S. ., & Spalding, D. . (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15(10), 1787-1806. doi:10.1016/0017-9310(72)90054-3

Shih, T.-H., Liou, W. W., Shabbir, A., Yang, Z., & Zhu, J. (1995). A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, 24(3), 227-238. doi:10.1016/0045-7930(94)00032-t

Agudelo, A. F., García-Contreras, R., Agudelo, J. R., & Armas, O. (2016). Potential for exhaust gas energy recovery in a diesel passenger car under European driving cycle. Applied Energy, 174, 201-212. doi:10.1016/j.apenergy.2016.04.092

Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289. doi:10.1016/0045-7825(74)90029-2

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem