- -

Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-poly(lactic acid) blends with diisocyanates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-poly(lactic acid) blends with diisocyanates

Mostrar el registro completo del ítem

González-Ausejo, J.; Sánchez-Safont, E.; Lagarón, J.; Balart, R.; Cabedo, L.; Gámez-Pérez, J. (2017). Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-poly(lactic acid) blends with diisocyanates. Journal of Applied Polymer Science. 134(20):1-11. https://doi.org/10.1002/app.44806

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148873

Ficheros en el ítem

Metadatos del ítem

Título: Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-poly(lactic acid) blends with diisocyanates
Autor: González-Ausejo, J. Sánchez-Safont, E. Lagarón, J.M. Balart, Rafael Cabedo, Luis Gámez-Pérez, J.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was blended with poly(lactic acid) (PLA) with various reactive processing agents to decrease its brittleness and enhance its processability. Three diisocyanates, ...[+]
Palabras clave: Biodegradable , Biopolymers and renewable polymers , Blends , Compatibilization , Packaging
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Applied Polymer Science. (issn: 0021-8995 )
DOI: 10.1002/app.44806
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/app.44806
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2015-63855-C2-2-R/ES/DESARROLLO Y CARACTERIZACION DE UN MULTICAPA BIODEGRADABLE DE ALTA BARRERA CON PROPIEDADES ACTIVAS Y BIOACTIVAS PARA ENVASADO ALIMENTARIO/
info:eu-repo/grantAgreement/UJI//PREDOC%2F2012%2F32/
info:eu-repo/grantAgreement/GVA//GV%2F2014%2F012/
info:eu-repo/grantAgreement/UJI//E-2015-22/
Descripción: "This is the peer reviewed version of the following article: González-Ausejo, Jennifer, Estefania Sánchez-Safont, José Maria Lagarón, Rafael Balart, Luis Cabedo, and José Gámez-Pérez. 2017. Compatibilization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)-Poly(Lactic Acid) Blends with Diisocyanates. Journal of Applied Polymer Science 134 (20). Wiley. doi:10.1002/app.44806, which has been published in final form at https://doi.org/10.1002/app.44806. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Agradecimientos:
Financial support for this research from the Ministerio de Economia y Competitividad (project AGL2015-63855-C2-2-R), the Generalitat Valenciana (contract grant GV/2014/123), and the Pla de Promocio de la Investigacio de ...[+]
Tipo: Artículo

References

Shah, A. A., Kato, S., Shintani, N., Kamini, N. R., & Nakajima-Kambe, T. (2014). Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters. Applied Microbiology and Biotechnology, 98(8), 3437-3447. doi:10.1007/s00253-014-5558-1

Mittal, V. (2011). Nanocomposites with Biodegradable Polymers. doi:10.1093/acprof:oso/9780199581924.001.0001

Auras, R., Lim, L.-T., Selke, S. E. M., & Tsuji, H. (Eds.). (2010). Poly(Lactic Acid). doi:10.1002/9780470649848 [+]
Shah, A. A., Kato, S., Shintani, N., Kamini, N. R., & Nakajima-Kambe, T. (2014). Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters. Applied Microbiology and Biotechnology, 98(8), 3437-3447. doi:10.1007/s00253-014-5558-1

Mittal, V. (2011). Nanocomposites with Biodegradable Polymers. doi:10.1093/acprof:oso/9780199581924.001.0001

Auras, R., Lim, L.-T., Selke, S. E. M., & Tsuji, H. (Eds.). (2010). Poly(Lactic Acid). doi:10.1002/9780470649848

Gamez-Perez, J., Velazquez-Infante, J. C., Franco-Urquiza, E., Pages, P., Carrasco, F., Santana, O. O., & Maspoch, M. L. (2011). Fracture behavior of quenched poly(lactic acid). Express Polymer Letters, 5(1), 82-91. doi:10.3144/expresspolymlett.2011.9

Gerard, T., & Budtova, T. (2012). Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. European Polymer Journal, 48(6), 1110-1117. doi:10.1016/j.eurpolymj.2012.03.015

Bucci, D. Z., Tavares, L. B. B., & Sell, I. (2005). PHB packaging for the storage of food products. Polymer Testing, 24(5), 564-571. doi:10.1016/j.polymertesting.2005.02.008

Cava, D., Giménez, E., Gavara, R., & Lagaron, J. M. (2006). Comparative Performance and Barrier Properties of Biodegradable Thermoplastics and Nanobiocomposites versus PET for Food Packaging Applications. Journal of Plastic Film & Sheeting, 22(4), 265-274. doi:10.1177/8756087906071354

Lagaron, J. M., & Lopez-Rubio, A. (2011). Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends in Food Science & Technology, 22(11), 611-617. doi:10.1016/j.tifs.2011.01.007

Rhim, J.-W., Park, H.-M., & Ha, C.-S. (2013). Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652. doi:10.1016/j.progpolymsci.2013.05.008

Sridhar, V., Lee, I., Chun, H. H., & Park, H. (2013). Graphene reinforced biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) nano-composites. Express Polymer Letters, 7(4), 320-328. doi:10.3144/expresspolymlett.2013.29

Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079

Cabedo, L., Luis Feijoo, J., Pilar Villanueva, M., Lagarón, J. M., & Giménez, E. (2006). Optimization of Biodegradable Nanocomposites Based on aPLA/PCL Blends for Food Packaging Applications. Macromolecular Symposia, 233(1), 191-197. doi:10.1002/masy.200690017

Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2015). Development of flexible materials based on plasticized electrospun PLA–PHB blends: Structural, thermal, mechanical and disintegration properties. European Polymer Journal, 73, 433-446. doi:10.1016/j.eurpolymj.2015.10.036

Deng, Y., & Thomas, N. L. (2015). Blending poly(butylene succinate) with poly(lactic acid): Ductility and phase inversion effects. European Polymer Journal, 71, 534-546. doi:10.1016/j.eurpolymj.2015.08.029

Modi, S., Koelling, K., & Vodovotz, Y. (2013). Assessing the mechanical, phase inversion, and rheological properties of poly-[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] (PHBV) blended with poly-(l-lactic acid) (PLA). European Polymer Journal, 49(11), 3681-3690. doi:10.1016/j.eurpolymj.2013.07.036

Modi, S., Koelling, K., & Vodovotz, Y. (2011). Miscibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with high molecular weight poly(lactic acid) blends determined by thermal analysis. Journal of Applied Polymer Science, 124(4), 3074-3081. doi:10.1002/app.35343

Zembouai, I., Bruzaud, S., Kaci, M., Benhamida, A., Corre, Y.-M., Grohens, Y., & Lopez-Cuesta, J.-M. (2013). Synergistic effect of compatibilizer and cloisite 30B on the functional properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polylactide blends. Polymer Engineering & Science, 54(10), 2239-2251. doi:10.1002/pen.23776

Zembouai, I., Kaci, M., Bruzaud, S., Benhamida, A., Corre, Y.-M., & Grohens, Y. (2013). A study of morphological, thermal, rheological and barrier properties of Poly(3-hydroxybutyrate-Co-3-Hydroxyvalerate)/polylactide blends prepared by melt mixing. Polymer Testing, 32(5), 842-851. doi:10.1016/j.polymertesting.2013.04.004

Zembouai, I., Bruzaud, S., Kaci, M., Benhamida, A., Corre, Y.-M., Grohens, Y., … Lopez-Cuesta, J.-M. (2013). Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Polylactide Blends: Thermal Stability, Flammability and Thermo-Mechanical Behavior. Journal of Polymers and the Environment, 22(1), 131-139. doi:10.1007/s10924-013-0626-7

Jost, V. (2015). Blending of Polyhydroxybutyrate-co-valerate with Polylactic Acid for Packaging Applications – Reflections on Miscibility and Effects on the Mechanical and Barrier Properties. Chemical and Biochemical Engineering Quarterly, 29(2), 221-246. doi:10.15255/cabeq.2014.2257

Liu, Q., Wu, C., Zhang, H., & Deng, B. (2015). Blends of polylactide and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with low content of hydroxyvalerate unit: Morphology, structure, and property. Journal of Applied Polymer Science, 132(42), n/a-n/a. doi:10.1002/app.42689

Li, L., Huang, W., Wang, B., Wei, W., Gu, Q., & Chen, P. (2015). Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PLA/PHBV) blend fibers. Polymer, 68, 183-194. doi:10.1016/j.polymer.2015.05.024

Li, J., Lai, M. F., & Liu, J. J. (2004). Effect of poly(propylene carbonate) on the crystallization and melting behavior of poly(?-hydroxybutyrate-co-?-hydroxyvalerate). Journal of Applied Polymer Science, 92(4), 2514-2521. doi:10.1002/app.20211

Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters, 8(11), 791-808. doi:10.3144/expresspolymlett.2014.82

Cailloux, J., Santana, O. O., Franco-Urquiza, E., Bou, J. J., Carrasco, F., Gamez-Perez, J., & Maspoch, M. L. (2013). Sheets of branched poly(lactic acid) obtained by one step reactive extrusion calendering process: Melt rheology analysis. Express Polymer Letters, 7(3), 304-318. doi:10.3144/expresspolymlett.2013.27

Pivsa-Art , S. Srisawat , N. O-Charoen , N. Pavasupree , S. Pivsa-Art , W. Yamane , H. Ohara , H. Annu. Tech. Conf. Soc. Plast. Eng. 2013 2 1777

Gerard, T., Budtova, T., Podshivalov, A., & Bronnikov, S. (2014). Polylactide/poly(hydroxybutyrate-co-hydroxyvalerate) blends: Morphology and mechanical properties. Express Polymer Letters, 8(8), 609-617. doi:10.3144/expresspolymlett.2014.64

Raffa, P., Coltelli, M.-B., Savi, S., Bianchi, S., & Castelvetro, V. (2012). Chain extension and branching of poly(ethylene terephthalate) (PET) with di- and multifunctional epoxy or isocyanate additives: An experimental and modelling study. Reactive and Functional Polymers, 72(1), 50-60. doi:10.1016/j.reactfunctpolym.2011.10.007

Torres, N., Robin, J. J., & Boutevin, B. (2001). Chemical modification of virgin and recycled poly(ethylene terephthalate) by adding of chain extenders during processing. Journal of Applied Polymer Science, 79(10), 1816-1824. doi:10.1002/1097-4628(20010307)79:10<1816::aid-app100>3.0.co;2-r

Zeng, J.-B., Li, K.-A., & Du, A.-K. (2015). Compatibilization strategies in poly(lactic acid)-based blends. RSC Advances, 5(41), 32546-32565. doi:10.1039/c5ra01655j

Alata, H., Aoyama, T., & Inoue, Y. (2007). Effect of Aging on the Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 40(13), 4546-4551. doi:10.1021/ma070418i

Sanchez-Garcia, M. D., & Lagaron, J. M. (2010). Novel clay-based nanobiocomposites of biopolyesters with synergistic barrier to UV light, gas, and vapour. Journal of Applied Polymer Science, 118(1), 188-199. doi:10.1002/app.31986

Grassie, N., Murray, E. J., & Holmes, P. A. (1984). The thermal degradation of poly(-(d)-β-hydroxybutyric acid): Part 3—The reaction mechanism. Polymer Degradation and Stability, 6(3), 127-134. doi:10.1016/0141-3910(84)90032-6

Kopinke, F.-D., & Mackenzie, K. (1997). Mechanistic aspects of the thermal degradation of poly(lactic acid) and poly(β-hydroxybutyric acid). Journal of Analytical and Applied Pyrolysis, 40-41, 43-53. doi:10.1016/s0165-2370(97)00022-3

Chen, B.-K., Shen, C.-H., & Chen, A. F. (2012). Preparation of ductile PLA materials by modification with trimethyl hexamethylene diisocyanate. Polymer Bulletin, 69(3), 313-322. doi:10.1007/s00289-012-0730-1

Zhao, H., Cui, Z., Sun, X., Turng, L.-S., & Peng, X. (2013). Morphology and Properties of Injection Molded Solid and Microcellular Polylactic Acid/Polyhydroxybutyrate-Valerate (PLA/PHBV) Blends. Industrial & Engineering Chemistry Research, 52(7), 2569-2581. doi:10.1021/ie301573y

Castro, M., Carrot, C., & Prochazka, F. (2004). Experimental and theoretical description of low frequency viscoelastic behaviour in immiscible polymer blends. Polymer, 45(12), 4095-4104. doi:10.1016/j.polymer.2004.04.019

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem