- -

Increasing Antioxidant Activity and Protein Digestibility in Phaseolus vulgaris and Avena sativa by Fermentation with the Pleurotus ostreatus Fungus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Increasing Antioxidant Activity and Protein Digestibility in Phaseolus vulgaris and Avena sativa by Fermentation with the Pleurotus ostreatus Fungus

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Espinosa Paéz, Edith es_ES
dc.contributor.author Alanis-Guzman, Ma Guadalupe es_ES
dc.contributor.author Hernandez Luna, Carlos es_ES
dc.contributor.author Baez Gonzalez, Juan G. es_ES
dc.contributor.author Amaya-Guerra, Carlos A. es_ES
dc.contributor.author Andrés Grau, Ana María es_ES
dc.date.accessioned 2020-07-30T03:34:50Z
dc.date.available 2020-07-30T03:34:50Z
dc.date.issued 2017-12-20 es_ES
dc.identifier.issn 1420-3049 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148884
dc.description.abstract [EN] The aim of the research was to determine the impact of fermentation with Pleurotus ostreatus on kidney beans, black beans, and oats. The results indicate that the fungus has a positive effect on the substrates when compared to the controls. The antioxidant activity (39.5% on kidney beans and 225% on oats in relation to the controls) and content of total polyphenols (kidney beans three times higher regarding the controls) increased significantly by the presence of the fungus mycelium, even after simulated digestion. There was a significant increase in protein digestibility (from 39.99 to 48.13% in black beans, 44.06 to 69.01% in kidney beans, and 63.25 to 70.01% in oats) and a decrease of antinutrient tannins (from 65.21 to 22.07 mg in black beans, 35.54 to 23.37 in kidney beans, and 55.67 to 28.11 in oats) as well as an increase in the contents of some essential amino acids. Overall, this fermentation treatment with Pleurotus ostreatus improved the nutritional quality of cereals and legumes, making them potential ingredients for the elaboration and/or fortification of foods for human nutrition. es_ES
dc.description.sponsorship We would like to thank Consejo Nacional de Ciencia y Tecnologa (CONACyT) for financially supporting E.E.-P to obtain her Ph.D. (scholarship 446871). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Molecules es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Pleurotus ostreatus es_ES
dc.subject Antioxidant activity es_ES
dc.subject Polyphenols es_ES
dc.subject Digestibility es_ES
dc.subject Fermentation es_ES
dc.subject Cereals es_ES
dc.subject Legumes es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Increasing Antioxidant Activity and Protein Digestibility in Phaseolus vulgaris and Avena sativa by Fermentation with the Pleurotus ostreatus Fungus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/molecules22122275 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//446871/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Espinosa Paéz, E.; Alanis-Guzman, MG.; Hernandez Luna, C.; Baez Gonzalez, JG.; Amaya-Guerra, CA.; Andrés Grau, AM. (2017). Increasing Antioxidant Activity and Protein Digestibility in Phaseolus vulgaris and Avena sativa by Fermentation with the Pleurotus ostreatus Fungus. Molecules. 22(12):1-11. https://doi.org/10.3390/molecules22122275 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/molecules22122275 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 12 es_ES
dc.identifier.pmid 29261152 es_ES
dc.identifier.pmcid PMC6149908 es_ES
dc.relation.pasarela S\354546 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Betoret, E., Betoret, N., Vidal, D., & Fito, P. (2011). Functional foods development: Trends and technologies. Trends in Food Science & Technology, 22(9), 498-508. doi:10.1016/j.tifs.2011.05.004 es_ES
dc.description.references Xu, B. J., Yuan, S. H., & Chang, S. K. C. (2007). Comparative Analyses of Phenolic Composition, Antioxidant Capacity, and Color of Cool Season Legumes and Other Selected Food Legumes. Journal of Food Science, 72(2), S167-S177. doi:10.1111/j.1750-3841.2006.00261.x es_ES
dc.description.references Luo, Y.-W., & Xie, W.-H. (2013). Effect of different processing methods on certain antinutritional factors and protein digestibility in green and white faba bean (Vicia fabaL.). CyTA - Journal of Food, 11(1), 43-49. doi:10.1080/19476337.2012.681705 es_ES
dc.description.references Sánchez, C. (2009). Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology, 85(5), 1321-1337. doi:10.1007/s00253-009-2343-7 es_ES
dc.description.references Taofiq, O., Heleno, S., Calhelha, R., Alves, M., Barros, L., Barreiro, M., … Ferreira, I. (2016). Development of Mushroom-Based Cosmeceutical Formulations with Anti-Inflammatory, Anti-Tyrosinase, Antioxidant, and Antibacterial Properties. Molecules, 21(10), 1372. doi:10.3390/molecules21101372 es_ES
dc.description.references Jayakumar, T., Thomas, P. A., & Geraldine, P. (2009). In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innovative Food Science & Emerging Technologies, 10(2), 228-234. doi:10.1016/j.ifset.2008.07.002 es_ES
dc.description.references Vega, A., & Franco, H. (2013). Productividad y calidad de los cuerpos fructíferos de los hongos comestibles Pleurotus pulmonarius RN2 y P. djamor RN81 y RN82 cultivados sobre sustratos lignocelulósicos. Información tecnológica, 24(1), 69-78. doi:10.4067/s0718-07642013000100009 es_ES
dc.description.references Raya-Pérez, J. C., Gutiérrez-Benicio, G. M., Ramírez-Pimentel, J. G., Covarrubias-Prieto, J., & Aguirre-Mancilla, C. L. (2014). Caracterización de proteínas y contenido mineral de dos variedades nativas de frijol de México. Agronomía Mesoamericana, 25(1), 1. doi:10.15517/am.v25i1.14185 es_ES
dc.description.references Deshpande, S. S., Sathe, S. K., & Salunkhe, D. K. (1984). Interrelationships between certain physical and chemical properties of dry bean (Phaseolus vulgaris L.). Qualitas Plantarum Plant Foods for Human Nutrition, 34(1), 53-65. doi:10.1007/bf01095072 es_ES
dc.description.references Papaspyridi, L.-M., Aligiannis, N., Topakas, E., Christakopoulos, P., Skaltsounis, A.-L., & Fokialakis, N. (2012). Submerged Fermentation of the Edible Mushroom Pleurotus ostreatus in a Batch Stirred Tank Bioreactor as a Promising Alternative for the Effective Production of Bioactive Metabolites. Molecules, 17(3), 2714-2724. doi:10.3390/molecules17032714 es_ES
dc.description.references Wang, D., Sakoda, A., & Suzuki, M. (2001). Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresource Technology, 78(3), 293-300. doi:10.1016/s0960-8524(01)00002-5 es_ES
dc.description.references Zieliński, H., & Kozłowska, H. (2000). Antioxidant Activity and Total Phenolics in Selected Cereal Grains and Their Different Morphological Fractions. Journal of Agricultural and Food Chemistry, 48(6), 2008-2016. doi:10.1021/jf990619o es_ES
dc.description.references Sinsabaugh, R. L. (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry, 42(3), 391-404. doi:10.1016/j.soilbio.2009.10.014 es_ES
dc.description.references Vergara-Domínguez, H., Gandul-Rojas, B., & Roca, M. (2011). Formation of oxidised chlorophyll catabolites in olives. Journal of Food Composition and Analysis, 24(6), 851-857. doi:10.1016/j.jfca.2011.02.003 es_ES
dc.description.references Granito, M., Paolini, M., & Pérez, S. (2008). Polyphenols and antioxidant capacity of Phaseolus vulgaris stored under extreme conditions and processed. LWT - Food Science and Technology, 41(6), 994-999. doi:10.1016/j.lwt.2007.07.014 es_ES
dc.description.references Giardina, P., Palmieri, G., Fontanella, B., Rivieccio, V., & Sannia, G. (2000). Manganese Peroxidase Isoenzymes Produced by Pleurotus ostreatus Grown on Wood Sawdust. Archives of Biochemistry and Biophysics, 376(1), 171-179. doi:10.1006/abbi.1999.1691 es_ES
dc.description.references Cardador-Martínez, A., Loarca-Piña, G., & Oomah, B. D. (2002). Antioxidant Activity in Common Beans (Phaseolus vulgarisL.)§. Journal of Agricultural and Food Chemistry, 50(24), 6975-6980. doi:10.1021/jf020296n es_ES
dc.description.references Peterson, D. M. (2001). Oat Antioxidants. Journal of Cereal Science, 33(2), 115-129. doi:10.1006/jcrs.2000.0349 es_ES
dc.description.references Sharma, R. K., & Arora, D. S. (2013). Fungal degradation of lignocellulosic residues: An aspect of improved nutritive quality. Critical Reviews in Microbiology, 41(1), 52-60. doi:10.3109/1040841x.2013.791247 es_ES
dc.description.references Xu, B. J., & Chang, S. K. C. (2008). Total Phenolic Content and Antioxidant Properties of Eclipse Black Beans (Phaseolus vulgaris L.) as Affected by Processing Methods. Journal of Food Science, 73(2), H19-H27. doi:10.1111/j.1750-3841.2007.00625.x es_ES
dc.description.references Bouayed, J., Hoffmann, L., & Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128(1), 14-21. doi:10.1016/j.foodchem.2011.02.052 es_ES
dc.description.references Mojica, L., Chen, K., & de Mejía, E. G. (2014). Impact of Commercial Precooking of Common Bean (Phaseolus vulgaris) on the Generation of Peptides, After Pepsin-Pancreatin Hydrolysis, Capable to Inhibit Dipeptidyl Peptidase-IV. Journal of Food Science, 80(1), H188-H198. doi:10.1111/1750-3841.12726 es_ES
dc.description.references Dias, D. R., Abreu, C. M. P. de, Silvestre, M. P. C., & Schwan, R. F. (2010). In vitro protein digestibility of enzymatically pre-treated bean (Phaseolus vulgaris L.) flour using commercial protease and Bacillus sp. protease. Food Science and Technology, 30(1), 94-99. doi:10.1590/s0101-20612010005000010 es_ES
dc.description.references Starzyńska-Janiszewska, A., Stodolak, B., & Mickowska, B. (2013). Effect of controlled lactic acid fermentation on selected bioactive and nutritional parameters of tempeh obtained from unhulled common bean (Phaseolus vulgaris ) seeds. Journal of the Science of Food and Agriculture, 94(2), 359-366. doi:10.1002/jsfa.6385 es_ES
dc.description.references Mkandawire, N. L., Weier, S. A., Weller, C. L., Jackson, D. S., & Rose, D. J. (2015). Composition, in vitro digestibility, and sensory evaluation of extruded whole grain sorghum breakfast cereals. LWT - Food Science and Technology, 62(1), 662-667. doi:10.1016/j.lwt.2014.12.051 es_ES
dc.description.references Tripathi, J. P., & Yadav, J. S. (1992). Optimisation of solid substrate fermentation of wheat straw into animal feed by Pleurotus ostreatus: a pilot effort. Animal Feed Science and Technology, 37(1-2), 59-72. doi:10.1016/0377-8401(92)90120-u es_ES
dc.description.references AW, T.-L., & SWANSON, B. G. (2006). Influence of Tannin on Phaseolus vulgaris Protein Digestibility and Quality. Journal of Food Science, 50(1), 67-71. doi:10.1111/j.1365-2621.1985.tb13279.x es_ES
dc.description.references Díaz, A. M., Caldas, G. V., & Blair, M. W. (2010). Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Research International, 43(2), 595-601. doi:10.1016/j.foodres.2009.07.014 es_ES
dc.description.references Martínez, D. A., Buglione, M. B., Filippi, M. V., Reynoso, L. del C., Rodríguez, G. E., & Agüero, M. S. (2015). Mycelial growth evaluation of Pleurotus ostreatus and Agrocybe aegerita on pear pomaces. Anales de Biología, (37). doi:10.6018/analesbio.37.1 es_ES
dc.description.references Hernández-Luna, C. E., Gutiérrez-Soto, G., & Salcedo-Martínez, S. M. (2007). Screening for decolorizing basidiomycetes in Mexico. World Journal of Microbiology and Biotechnology, 24(4), 465-473. doi:10.1007/s11274-007-9495-3 es_ES
dc.description.references Gan, R.-Y., Li, H.-B., Gunaratne, A., Sui, Z.-Q., & Corke, H. (2017). Effects of Fermented Edible Seeds and Their Products on Human Health: Bioactive Components and Bioactivities. Comprehensive Reviews in Food Science and Food Safety, 16(3), 489-531. doi:10.1111/1541-4337.12257 es_ES
dc.description.references Hu, J., & Duvnjak, Z. (2004). Production of a Laccase and Decrease of the Phenolic Content in Canola Meal during the Growth of the FungusPleurotus ostreatus in Solid State Fermentation Processes. Engineering in Life Sciences, 4(1), 50-55. doi:10.1002/elsc.200400005 es_ES
dc.description.references Lamothe, S., Corbeil, M.-M., Turgeon, S. L., & Britten, M. (2012). Influence of cheese matrix on lipid digestion in a simulated gastro-intestinal environment. Food & Function, 3(7), 724. doi:10.1039/c2fo10256k es_ES
dc.description.references Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j es_ES
dc.description.references Sathya, A., & Siddhuraju, P. (2013). Effect of Indigenous Processing Methods on Phenolics and Antioxidant Potential of Underutilized LegumesAcacia auriculiformisandParkia roxburghii. Journal of Food Quality, 36(2), 98-112. doi:10.1111/jfq.12024 es_ES
dc.description.references Reyes-Moreno, C., Cuevas-Rodríguez, E., Milán-Carrillo, J., Cárdenas-Valenzuela, O., & Barrón-Hoyos, J. (2004). Solid state fermentation process for producing chickpea(Cicer arietinum L) tempeh flour. Physicochemical and nutritional characteristics of the product. Journal of the Science of Food and Agriculture, 84(3), 271-278. doi:10.1002/jsfa.1637 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem