Mostrar el registro sencillo del ítem
dc.contributor.author | Espinosa Paéz, Edith | es_ES |
dc.contributor.author | Alanis-Guzman, Ma Guadalupe | es_ES |
dc.contributor.author | Hernandez Luna, Carlos | es_ES |
dc.contributor.author | Baez Gonzalez, Juan G. | es_ES |
dc.contributor.author | Amaya-Guerra, Carlos A. | es_ES |
dc.contributor.author | Andrés Grau, Ana María | es_ES |
dc.date.accessioned | 2020-07-30T03:34:50Z | |
dc.date.available | 2020-07-30T03:34:50Z | |
dc.date.issued | 2017-12-20 | es_ES |
dc.identifier.issn | 1420-3049 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148884 | |
dc.description.abstract | [EN] The aim of the research was to determine the impact of fermentation with Pleurotus ostreatus on kidney beans, black beans, and oats. The results indicate that the fungus has a positive effect on the substrates when compared to the controls. The antioxidant activity (39.5% on kidney beans and 225% on oats in relation to the controls) and content of total polyphenols (kidney beans three times higher regarding the controls) increased significantly by the presence of the fungus mycelium, even after simulated digestion. There was a significant increase in protein digestibility (from 39.99 to 48.13% in black beans, 44.06 to 69.01% in kidney beans, and 63.25 to 70.01% in oats) and a decrease of antinutrient tannins (from 65.21 to 22.07 mg in black beans, 35.54 to 23.37 in kidney beans, and 55.67 to 28.11 in oats) as well as an increase in the contents of some essential amino acids. Overall, this fermentation treatment with Pleurotus ostreatus improved the nutritional quality of cereals and legumes, making them potential ingredients for the elaboration and/or fortification of foods for human nutrition. | es_ES |
dc.description.sponsorship | We would like to thank Consejo Nacional de Ciencia y Tecnologa (CONACyT) for financially supporting E.E.-P to obtain her Ph.D. (scholarship 446871). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Molecules | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Pleurotus ostreatus | es_ES |
dc.subject | Antioxidant activity | es_ES |
dc.subject | Polyphenols | es_ES |
dc.subject | Digestibility | es_ES |
dc.subject | Fermentation | es_ES |
dc.subject | Cereals | es_ES |
dc.subject | Legumes | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Increasing Antioxidant Activity and Protein Digestibility in Phaseolus vulgaris and Avena sativa by Fermentation with the Pleurotus ostreatus Fungus | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/molecules22122275 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//446871/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Espinosa Paéz, E.; Alanis-Guzman, MG.; Hernandez Luna, C.; Baez Gonzalez, JG.; Amaya-Guerra, CA.; Andrés Grau, AM. (2017). Increasing Antioxidant Activity and Protein Digestibility in Phaseolus vulgaris and Avena sativa by Fermentation with the Pleurotus ostreatus Fungus. Molecules. 22(12):1-11. https://doi.org/10.3390/molecules22122275 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/molecules22122275 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.pmid | 29261152 | es_ES |
dc.identifier.pmcid | PMC6149908 | es_ES |
dc.relation.pasarela | S\354546 | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.description.references | Betoret, E., Betoret, N., Vidal, D., & Fito, P. (2011). Functional foods development: Trends and technologies. Trends in Food Science & Technology, 22(9), 498-508. doi:10.1016/j.tifs.2011.05.004 | es_ES |
dc.description.references | Xu, B. J., Yuan, S. H., & Chang, S. K. C. (2007). Comparative Analyses of Phenolic Composition, Antioxidant Capacity, and Color of Cool Season Legumes and Other Selected Food Legumes. Journal of Food Science, 72(2), S167-S177. doi:10.1111/j.1750-3841.2006.00261.x | es_ES |
dc.description.references | Luo, Y.-W., & Xie, W.-H. (2013). Effect of different processing methods on certain antinutritional factors and protein digestibility in green and white faba bean (Vicia fabaL.). CyTA - Journal of Food, 11(1), 43-49. doi:10.1080/19476337.2012.681705 | es_ES |
dc.description.references | Sánchez, C. (2009). Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology, 85(5), 1321-1337. doi:10.1007/s00253-009-2343-7 | es_ES |
dc.description.references | Taofiq, O., Heleno, S., Calhelha, R., Alves, M., Barros, L., Barreiro, M., … Ferreira, I. (2016). Development of Mushroom-Based Cosmeceutical Formulations with Anti-Inflammatory, Anti-Tyrosinase, Antioxidant, and Antibacterial Properties. Molecules, 21(10), 1372. doi:10.3390/molecules21101372 | es_ES |
dc.description.references | Jayakumar, T., Thomas, P. A., & Geraldine, P. (2009). In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innovative Food Science & Emerging Technologies, 10(2), 228-234. doi:10.1016/j.ifset.2008.07.002 | es_ES |
dc.description.references | Vega, A., & Franco, H. (2013). Productividad y calidad de los cuerpos fructíferos de los hongos comestibles Pleurotus pulmonarius RN2 y P. djamor RN81 y RN82 cultivados sobre sustratos lignocelulósicos. Información tecnológica, 24(1), 69-78. doi:10.4067/s0718-07642013000100009 | es_ES |
dc.description.references | Raya-Pérez, J. C., Gutiérrez-Benicio, G. M., Ramírez-Pimentel, J. G., Covarrubias-Prieto, J., & Aguirre-Mancilla, C. L. (2014). Caracterización de proteínas y contenido mineral de dos variedades nativas de frijol de México. Agronomía Mesoamericana, 25(1), 1. doi:10.15517/am.v25i1.14185 | es_ES |
dc.description.references | Deshpande, S. S., Sathe, S. K., & Salunkhe, D. K. (1984). Interrelationships between certain physical and chemical properties of dry bean (Phaseolus vulgaris L.). Qualitas Plantarum Plant Foods for Human Nutrition, 34(1), 53-65. doi:10.1007/bf01095072 | es_ES |
dc.description.references | Papaspyridi, L.-M., Aligiannis, N., Topakas, E., Christakopoulos, P., Skaltsounis, A.-L., & Fokialakis, N. (2012). Submerged Fermentation of the Edible Mushroom Pleurotus ostreatus in a Batch Stirred Tank Bioreactor as a Promising Alternative for the Effective Production of Bioactive Metabolites. Molecules, 17(3), 2714-2724. doi:10.3390/molecules17032714 | es_ES |
dc.description.references | Wang, D., Sakoda, A., & Suzuki, M. (2001). Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresource Technology, 78(3), 293-300. doi:10.1016/s0960-8524(01)00002-5 | es_ES |
dc.description.references | Zieliński, H., & Kozłowska, H. (2000). Antioxidant Activity and Total Phenolics in Selected Cereal Grains and Their Different Morphological Fractions. Journal of Agricultural and Food Chemistry, 48(6), 2008-2016. doi:10.1021/jf990619o | es_ES |
dc.description.references | Sinsabaugh, R. L. (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology and Biochemistry, 42(3), 391-404. doi:10.1016/j.soilbio.2009.10.014 | es_ES |
dc.description.references | Vergara-Domínguez, H., Gandul-Rojas, B., & Roca, M. (2011). Formation of oxidised chlorophyll catabolites in olives. Journal of Food Composition and Analysis, 24(6), 851-857. doi:10.1016/j.jfca.2011.02.003 | es_ES |
dc.description.references | Granito, M., Paolini, M., & Pérez, S. (2008). Polyphenols and antioxidant capacity of Phaseolus vulgaris stored under extreme conditions and processed. LWT - Food Science and Technology, 41(6), 994-999. doi:10.1016/j.lwt.2007.07.014 | es_ES |
dc.description.references | Giardina, P., Palmieri, G., Fontanella, B., Rivieccio, V., & Sannia, G. (2000). Manganese Peroxidase Isoenzymes Produced by Pleurotus ostreatus Grown on Wood Sawdust. Archives of Biochemistry and Biophysics, 376(1), 171-179. doi:10.1006/abbi.1999.1691 | es_ES |
dc.description.references | Cardador-Martínez, A., Loarca-Piña, G., & Oomah, B. D. (2002). Antioxidant Activity in Common Beans (Phaseolus vulgarisL.)§. Journal of Agricultural and Food Chemistry, 50(24), 6975-6980. doi:10.1021/jf020296n | es_ES |
dc.description.references | Peterson, D. M. (2001). Oat Antioxidants. Journal of Cereal Science, 33(2), 115-129. doi:10.1006/jcrs.2000.0349 | es_ES |
dc.description.references | Sharma, R. K., & Arora, D. S. (2013). Fungal degradation of lignocellulosic residues: An aspect of improved nutritive quality. Critical Reviews in Microbiology, 41(1), 52-60. doi:10.3109/1040841x.2013.791247 | es_ES |
dc.description.references | Xu, B. J., & Chang, S. K. C. (2008). Total Phenolic Content and Antioxidant Properties of Eclipse Black Beans (Phaseolus vulgaris L.) as Affected by Processing Methods. Journal of Food Science, 73(2), H19-H27. doi:10.1111/j.1750-3841.2007.00625.x | es_ES |
dc.description.references | Bouayed, J., Hoffmann, L., & Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128(1), 14-21. doi:10.1016/j.foodchem.2011.02.052 | es_ES |
dc.description.references | Mojica, L., Chen, K., & de Mejía, E. G. (2014). Impact of Commercial Precooking of Common Bean (Phaseolus vulgaris) on the Generation of Peptides, After Pepsin-Pancreatin Hydrolysis, Capable to Inhibit Dipeptidyl Peptidase-IV. Journal of Food Science, 80(1), H188-H198. doi:10.1111/1750-3841.12726 | es_ES |
dc.description.references | Dias, D. R., Abreu, C. M. P. de, Silvestre, M. P. C., & Schwan, R. F. (2010). In vitro protein digestibility of enzymatically pre-treated bean (Phaseolus vulgaris L.) flour using commercial protease and Bacillus sp. protease. Food Science and Technology, 30(1), 94-99. doi:10.1590/s0101-20612010005000010 | es_ES |
dc.description.references | Starzyńska-Janiszewska, A., Stodolak, B., & Mickowska, B. (2013). Effect of controlled lactic acid fermentation on selected bioactive and nutritional parameters of tempeh obtained from unhulled common bean (Phaseolus vulgaris ) seeds. Journal of the Science of Food and Agriculture, 94(2), 359-366. doi:10.1002/jsfa.6385 | es_ES |
dc.description.references | Mkandawire, N. L., Weier, S. A., Weller, C. L., Jackson, D. S., & Rose, D. J. (2015). Composition, in vitro digestibility, and sensory evaluation of extruded whole grain sorghum breakfast cereals. LWT - Food Science and Technology, 62(1), 662-667. doi:10.1016/j.lwt.2014.12.051 | es_ES |
dc.description.references | Tripathi, J. P., & Yadav, J. S. (1992). Optimisation of solid substrate fermentation of wheat straw into animal feed by Pleurotus ostreatus: a pilot effort. Animal Feed Science and Technology, 37(1-2), 59-72. doi:10.1016/0377-8401(92)90120-u | es_ES |
dc.description.references | AW, T.-L., & SWANSON, B. G. (2006). Influence of Tannin on Phaseolus vulgaris Protein Digestibility and Quality. Journal of Food Science, 50(1), 67-71. doi:10.1111/j.1365-2621.1985.tb13279.x | es_ES |
dc.description.references | Díaz, A. M., Caldas, G. V., & Blair, M. W. (2010). Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Research International, 43(2), 595-601. doi:10.1016/j.foodres.2009.07.014 | es_ES |
dc.description.references | Martínez, D. A., Buglione, M. B., Filippi, M. V., Reynoso, L. del C., Rodríguez, G. E., & Agüero, M. S. (2015). Mycelial growth evaluation of Pleurotus ostreatus and Agrocybe aegerita on pear pomaces. Anales de Biología, (37). doi:10.6018/analesbio.37.1 | es_ES |
dc.description.references | Hernández-Luna, C. E., Gutiérrez-Soto, G., & Salcedo-Martínez, S. M. (2007). Screening for decolorizing basidiomycetes in Mexico. World Journal of Microbiology and Biotechnology, 24(4), 465-473. doi:10.1007/s11274-007-9495-3 | es_ES |
dc.description.references | Gan, R.-Y., Li, H.-B., Gunaratne, A., Sui, Z.-Q., & Corke, H. (2017). Effects of Fermented Edible Seeds and Their Products on Human Health: Bioactive Components and Bioactivities. Comprehensive Reviews in Food Science and Food Safety, 16(3), 489-531. doi:10.1111/1541-4337.12257 | es_ES |
dc.description.references | Hu, J., & Duvnjak, Z. (2004). Production of a Laccase and Decrease of the Phenolic Content in Canola Meal during the Growth of the FungusPleurotus ostreatus in Solid State Fermentation Processes. Engineering in Life Sciences, 4(1), 50-55. doi:10.1002/elsc.200400005 | es_ES |
dc.description.references | Lamothe, S., Corbeil, M.-M., Turgeon, S. L., & Britten, M. (2012). Influence of cheese matrix on lipid digestion in a simulated gastro-intestinal environment. Food & Function, 3(7), 724. doi:10.1039/c2fo10256k | es_ES |
dc.description.references | Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j | es_ES |
dc.description.references | Sathya, A., & Siddhuraju, P. (2013). Effect of Indigenous Processing Methods on Phenolics and Antioxidant Potential of Underutilized LegumesAcacia auriculiformisandParkia roxburghii. Journal of Food Quality, 36(2), 98-112. doi:10.1111/jfq.12024 | es_ES |
dc.description.references | Reyes-Moreno, C., Cuevas-Rodríguez, E., Milán-Carrillo, J., Cárdenas-Valenzuela, O., & Barrón-Hoyos, J. (2004). Solid state fermentation process for producing chickpea(Cicer arietinum L) tempeh flour. Physicochemical and nutritional characteristics of the product. Journal of the Science of Food and Agriculture, 84(3), 271-278. doi:10.1002/jsfa.1637 | es_ES |