- -

On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications

Show full item record

Arrieta, MP.; Samper, M.; Aldas-Carrasco, MF.; López-Martínez, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials. 10(9):1-26. https://doi.org/10.3390/ma10091008

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148886

Files in this item

Item Metadata

Title: On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications
Author: Arrieta, Marina Patricia Samper, María-Dolores Aldas-Carrasco, Miguel Fernando López-Martínez, Juan
UPV Unit: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Issued date:
Abstract:
[EN] Poly(lactic acid) (PLA) is the most used biopolymer for food packaging applications. Several strategies have been made to improve PLA properties for extending its applications in the packaging field. Melt blending ...[+]
Subjects: Food packaging , Biopolymers , Biodegradable , Poly(lactic acid) , Poly(hydroxybutyrate) , Blends
Copyrigths: Reconocimiento (by)
Source:
Materials. (eissn: 1996-1944 )
DOI: 10.3390/ma10091008
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/ma10091008
Project ID:
info:eu-repo/grantAgreement/MINECO//FJCI-2014-20630/ES/FJCI-2014-20630/
info:eu-repo/grantAgreement/MINECO//MAT2014-59242-C2-1-R/ES/TECNICAS AVANZADAS DE PROCESADO PARA SISTEMAS ACTIVOS ENCAPSULADOS/
info:eu-repo/grantAgreement/MICINN//MAT2011-28468-C02-02/ES/PROCESADO DE SISTEMAS LAMINADOS EN BASE BIOPOLIMERICA PARA EL ENVASADO ACTIVO DE ALIMENTOS/
Thanks:
This research was performed within the framework of the project MAT2014-59242-C2-1-R supported by the Spanish Ministry of Economy and Competitiveness (MINECO). Marina Patricia Arrieta is a recipient of Juan de la Cierva ...[+]
Type: Artículo

References

Cleo, G., Isenring, E., Thomas, R., & Glasziou, P. (2017). Could habits hold the key to weight loss maintenance? A narrative review. Journal of Human Nutrition and Dietetics, 30(5), 655-664. doi:10.1111/jhn.12456

Jin, T., & Zhang, H. (2008). Biodegradable Polylactic Acid Polymer with Nisin for Use in Antimicrobial Food Packaging. Journal of Food Science, 73(3), M127-M134. doi:10.1111/j.1750-3841.2008.00681.x

Castro López, M. del M., Dopico García, S., Ares Pernas, A., López Vilariño, J. M., & González Rodríguez, M. V. (2012). Effect of PPG-PEG-PPG on the Tocopherol-Controlled Release from Films Intended for Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 60(33), 8163-8170. doi:10.1021/jf301442p [+]
Cleo, G., Isenring, E., Thomas, R., & Glasziou, P. (2017). Could habits hold the key to weight loss maintenance? A narrative review. Journal of Human Nutrition and Dietetics, 30(5), 655-664. doi:10.1111/jhn.12456

Jin, T., & Zhang, H. (2008). Biodegradable Polylactic Acid Polymer with Nisin for Use in Antimicrobial Food Packaging. Journal of Food Science, 73(3), M127-M134. doi:10.1111/j.1750-3841.2008.00681.x

Castro López, M. del M., Dopico García, S., Ares Pernas, A., López Vilariño, J. M., & González Rodríguez, M. V. (2012). Effect of PPG-PEG-PPG on the Tocopherol-Controlled Release from Films Intended for Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 60(33), 8163-8170. doi:10.1021/jf301442p

Arrieta, M. P., Fortunati, E., Dominici, F., López, J., & Kenny, J. M. (2015). Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 121, 265-275. doi:10.1016/j.carbpol.2014.12.056

Souza, V. G. L., & Fernando, A. L. (2016). Nanoparticles in food packaging: Biodegradability and potential migration to food—A review. Food Packaging and Shelf Life, 8, 63-70. doi:10.1016/j.fpsl.2016.04.001

Lagaron, J. M., & Lopez-Rubio, A. (2011). Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends in Food Science & Technology, 22(11), 611-617. doi:10.1016/j.tifs.2011.01.007

Briassoulis, D., & Dejean, C. (2010). Critical Review of Norms and Standards for Biodegradable Agricultural Plastics Part Ι. Biodegradation in Soil. Journal of Polymers and the Environment, 18(3), 384-400. doi:10.1007/s10924-010-0168-1

Avérous, L. (2004). Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44(3), 231-274. doi:10.1081/mc-200029326

Auras, R., Harte, B., & Selke, S. (2004). An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience, 4(9), 835-864. doi:10.1002/mabi.200400043

Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S. E., & Singh, S. P. (2007). Compostability of Bioplastic Packaging Materials: An Overview. Macromolecular Bioscience, 7(3), 255-277. doi:10.1002/mabi.200600168

Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940

Bor, Y., Alin, J., & Hakkarainen, M. (2012). Electrospray Ionization-Mass Spectrometry Analysis Reveals Migration of Cyclic Lactide Oligomers from Polylactide Packaging in Contact with Ethanolic Food Simulant. Packaging Technology and Science, 25(7), 427-433. doi:10.1002/pts.990

Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-571. doi:10.1111/j.1541-4337.2010.00126.x

Carrasco, F., Cailloux, J., Sánchez-Jiménez, P. E., & Maspoch, M. L. (2014). Improvement of the thermal stability of branched poly(lactic acid) obtained by reactive extrusion. Polymer Degradation and Stability, 104, 40-49. doi:10.1016/j.polymdegradstab.2014.03.026

Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17-46. doi:10.1016/j.addr.2016.04.003

Arrieta, M. P., & Peponi, L. (2017). Polyurethane based on PLA and PCL incorporated with catechin: Structural, thermal and mechanical characterization. European Polymer Journal, 89, 174-184. doi:10.1016/j.eurpolymj.2017.02.028

Yuan, M. W., Qin, Y. Y., Yang, J. Y., Wu, Y., Yuan, M. L., & Li, H. L. (2013). Preparation and Characterization of Poly(L-Lactide-Co-ε-Caprolactone) Copolymer for Food Packaging Application. Advanced Materials Research, 779-780, 231-234. doi:10.4028/www.scientific.net/amr.779-780.231

Arrieta, M. P., Samper, M. D., López, J., & Jiménez, A. (2014). Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. Journal of Polymers and the Environment, 22(4), 460-470. doi:10.1007/s10924-014-0654-y

Cruz-Romero, M. (2008). Crop-based biodegradable packaging and its environmental implications. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 3(074). doi:10.1079/pavsnnr20083074

Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082

Luzi, F., Fortunati, E., Jiménez, A., Puglia, D., Pezzolla, D., Gigliotti, G., … Torre, L. (2016). Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Industrial Crops and Products, 93, 276-289. doi:10.1016/j.indcrop.2016.01.045

González-Ausejo, J., Sánchez-Safont, E., Lagarón, J. M., Balart, R., Cabedo, L., & Gámez-Pérez, J. (2017). Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-poly(lactic acid) blends with diisocyanates. Journal of Applied Polymer Science, 134(20). doi:10.1002/app.44806

Arrieta, M. P., Fortunati, E., Dominici, F., Rayón, E., López, J., & Kenny, J. M. (2014). PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polymer Degradation and Stability, 107, 139-149. doi:10.1016/j.polymdegradstab.2014.05.010

Ljungberg, N., & Wesslén, B. (2005). Preparation and Properties of Plasticized Poly(lactic acid) Films. Biomacromolecules, 6(3), 1789-1796. doi:10.1021/bm050098f

Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079

Garcia-Garcia, D., Ferri, J. M., Boronat, T., Lopez-Martinez, J., & Balart, R. (2016). Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties. Polymer Bulletin, 73(12), 3333-3350. doi:10.1007/s00289-016-1659-6

Khosravi-Darani, K. (2015). Application of Poly(hydroxyalkanoate) In Food Packaging: Improvements by Nanotechnology. Chemical and Biochemical Engineering Quarterly, 29(2), 275-285. doi:10.15255/cabeq.2014.2260

Sánchez-Safont, E. L., González-Ausejo, J., Gámez-Pérez, J., Lagarón, J. M., & Cabedo, L. (2016). Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Purified Cellulose Fiber Composites by Melt Blending: Characterization and Degradation in Composting Conditions. Journal of Renewable Materials, 4(2), 123-132. doi:10.7569/jrm.2015.634127

González-Ausejo, J., Sanchez-Safont, E., Lagaron, J. M., Olsson, R. T., Gamez-Perez, J., & Cabedo, L. (2017). Assessing the thermoformability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(acid lactic) blends compatibilized with diisocyanates. Polymer Testing, 62, 235-245. doi:10.1016/j.polymertesting.2017.06.026

Bucci, D. Z., Tavares, L. B. B., & Sell, I. (2005). PHB packaging for the storage of food products. Polymer Testing, 24(5), 564-571. doi:10.1016/j.polymertesting.2005.02.008

Lenz, R. W., & Marchessault, R. H. (2005). Bacterial Polyesters:  Biosynthesis, Biodegradable Plastics and Biotechnology. Biomacromolecules, 6(1), 1-8. doi:10.1021/bm049700c

Moire, L., Rezzonico, E., & Poirier, Y. (2003). Synthesis of novel biomaterials in plants. Journal of Plant Physiology, 160(7), 831-839. doi:10.1078/0176-1617-01030

Gracida, J., Alba, J., Cardoso, J., & Perez-Guevara, F. (2004). Studies of biodegradation of binary blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) with poly(2-hydroxyethylmetacrilate) (PHEMA). Polymer Degradation and Stability, 83(2), 247-253. doi:10.1016/s0141-3910(03)00269-6

Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology, 30(2), 67-79. doi:10.1002/adv.20235

Garcia-Garcia, D., Rayón, E., Carbonell-Verdu, A., Lopez-Martinez, J., & Balart, R. (2017). Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. European Polymer Journal, 86, 41-57. doi:10.1016/j.eurpolymj.2016.11.018

Bucci, D. Z., Tavares, L. B. B., & Sell, I. (2007). Biodegradation and physical evaluation of PHB packaging. Polymer Testing, 26(7), 908-915. doi:10.1016/j.polymertesting.2007.06.013

Arrieta, M. P., Fortunati, E., Dominici, F., Rayón, E., López, J., & Kenny, J. M. (2014). Multifunctional PLA–PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohydrate Polymers, 107, 16-24. doi:10.1016/j.carbpol.2014.02.044

S. de O. Patrício, P., Pereira, F. V., dos Santos, M. C., de Souza, P. P., Roa, J. P. B., & Orefice, R. L. (2012). Increasing the elongation at break of polyhydroxybutyrate biopolymer: Effect of cellulose nanowhiskers on mechanical and thermal properties. Journal of Applied Polymer Science, 127(5), 3613-3621. doi:10.1002/app.37811

European Bioplasticshttp://www.european-bioplastics.org/market/

Hu, Y., Sato, H., Zhang, J., Noda, I., & Ozaki, Y. (2008). Crystallization behavior of poly(l-lactic acid) affected by the addition of a small amount of poly(3-hydroxybutyrate). Polymer, 49(19), 4204-4210. doi:10.1016/j.polymer.2008.07.031

Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2015). Development of flexible materials based on plasticized electrospun PLA–PHB blends: Structural, thermal, mechanical and disintegration properties. European Polymer Journal, 73, 433-446. doi:10.1016/j.eurpolymj.2015.10.036

Calvão, P. S., Chenal, J.-M., Gauthier, C., Demarquette, N. R., Bogner, A., & Cavaille, J. Y. (2011). Understanding the mechanical and biodegradation behaviour of poly(hydroxybutyrate)/rubber blends in relation to their morphology. Polymer International, 61(3), 434-441. doi:10.1002/pi.3211

Blümm, E., & Owen, A. J. (1995). Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/ poly(l-lactide) blends. Polymer, 36(21), 4077-4081. doi:10.1016/0032-3861(95)90987-d

Chang, L., & Woo, E. M. (2012). Crystallization of poly(3-hydroxybutyrate) with stereocomplexed polylactide as biodegradable nucleation agent. Polymer Engineering & Science, 52(7), 1413-1419. doi:10.1002/pen.23081

Ni, C., Luo, R., Xu, K., & Chen, G.-Q. (2009). Thermal and crystallinity property studies of poly (L-lactic acid) blended with oligomers of 3-hydroxybutyrate or dendrimers of hydroxyalkanoic acids. Journal of Applied Polymer Science, 111(4), 1720-1727. doi:10.1002/app.29182

Vogel, C., & Siesler, H. W. (2008). Thermal Degradation of Poly(ɛ-caprolactone), Poly(L-lactic acid) and their Blends with Poly(3-hydroxy-butyrate) Studied by TGA/FT-IR Spectroscopy. Macromolecular Symposia, 265(1), 183-194. doi:10.1002/masy.200850520

Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009

Ohkoshi, I., Abe, H., & Doi, Y. (2000). Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate]. Polymer, 41(15), 5985-5992. doi:10.1016/s0032-3861(99)00781-8

Tri, P. N., Domenek, S., Guinault, A., & Sollogoub, C. (2013). Crystallization behavior of poly(lactide)/poly(β-hydroxybutyrate)/talc composites. Journal of Applied Polymer Science, 129(6), 3355-3365. doi:10.1002/app.39056

Zhang, L., Xiong, C., & Deng, X. (1996). Miscibility, crystallization and morphology of poly(β-hydroxybutyrate)/poly(d,l-lactide) blends. Polymer, 37(2), 235-241. doi:10.1016/0032-3861(96)81093-7

Musioł, M., Sikorska, W., Adamus, G., Janeczek, H., Kowalczuk, M., & Rydz, J. (2015). (Bio)degradable polymers as a potential material for food packaging: studies on the (bio)degradation process of PLA/(R,S)-PHB rigid foils under industrial composting conditions. European Food Research and Technology, 242(6), 815-823. doi:10.1007/s00217-015-2611-y

Bartczak, Z., Galeski, A., Kowalczuk, M., Sobota, M., & Malinowski, R. (2013). Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate) – morphology and properties. European Polymer Journal, 49(11), 3630-3641. doi:10.1016/j.eurpolymj.2013.07.033

Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. doi:10.1016/j.progpolymsci.2008.05.004

Drumright, R. E., Gruber, P. R., & Henton, D. E. (2000). Polylactic Acid Technology. Advanced Materials, 12(23), 1841-1846. doi:10.1002/1521-4095(200012)12:23<1841::aid-adma1841>3.0.co;2-e

Jandas, P. J., Mohanty, S., & Nayak, S. K. (2013). Morphology and Thermal Properties of Renewable Resource-Based Polymer Blend Nanocomposites Influenced by a Reactive Compatibilizer. ACS Sustainable Chemistry & Engineering, 2(3), 377-386. doi:10.1021/sc400395s

Dong, W., Ma, P., Wang, S., Chen, M., Cai, X., & Zhang, Y. (2013). Effect of partial crosslinking on morphology and properties of the poly(β-hydroxybutyrate)/poly(d,l-lactic acid) blends. Polymer Degradation and Stability, 98(9), 1549-1555. doi:10.1016/j.polymdegradstab.2013.06.033

Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2016). Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products, 93, 290-301. doi:10.1016/j.indcrop.2015.12.058

Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2016). Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites. Polymer Degradation and Stability, 132, 145-156. doi:10.1016/j.polymdegradstab.2016.02.027

Toncheva, A., Spasova, M., Paneva, D., Manolova, N., & Rashkov, I. (2014). Polylactide (PLA)-Based Electrospun Fibrous Materials Containing Ionic Drugs as Wound Dressing Materials: A Review. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(13), 657-671. doi:10.1080/00914037.2013.854240

Abdelwahab, M. A., Flynn, A., Chiou, B.-S., Imam, S., Orts, W., & Chiellini, E. (2012). Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polymer Degradation and Stability, 97(9), 1822-1828. doi:10.1016/j.polymdegradstab.2012.05.036

Burgos, N., Armentano, I., Fortunati, E., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2017). Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging. Food and Bioprocess Technology, 10(4), 770-780. doi:10.1007/s11947-016-1846-3

Kiziltas, A., Nazari, B., Erbas Kiziltas, E., Gardner, D. J., Han, Y., & Rushing, T. S. (2016). Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system. Carbohydrate Polymers, 140, 393-399. doi:10.1016/j.carbpol.2015.12.059

Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Bio-based PLA_PHB plasticized blend films: Processing and structural characterization. LWT - Food Science and Technology, 64(2), 980-988. doi:10.1016/j.lwt.2015.06.032

Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters, 9(7), 583-596. doi:10.3144/expresspolymlett.2015.55

Murariu, M., Da Silva Ferreira, A., Alexandre, M., & Dubois, P. (2008). Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polymers for Advanced Technologies, 19(6), 636-646. doi:10.1002/pat.1131

Martin, O., & Avérous, L. (2001). Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209-6219. doi:10.1016/s0032-3861(01)00086-6

Burgos, N., Tolaguera, D., Fiori, S., & Jiménez, A. (2013). Synthesis and Characterization of Lactic Acid Oligomers: Evaluation of Performance as Poly(Lactic Acid) Plasticizers. Journal of Polymers and the Environment, 22(2), 227-235. doi:10.1007/s10924-013-0628-5

Martino, V. P., Jiménez, A., Ruseckaite, R. A., & Avérous, L. (2010). Structure and properties of clay nano-biocomposites based on poly(lactic acid) plasticized with polyadipates. Polymers for Advanced Technologies, 22(12), 2206-2213. doi:10.1002/pat.1747

Courgneau, C., Domenek, S., Guinault, A., Avérous, L., & Ducruet, V. (2011). Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly(Lactic Acid). Journal of Polymers and the Environment, 19(2), 362-371. doi:10.1007/s10924-011-0285-5

Maiza, M., Benaniba, M. T., Quintard, G., & Massardier-Nageotte, V. (2015). Biobased additive plasticizing Polylactic acid (PLA). Polímeros, 25(6), 581-590. doi:10.1590/0104-1428.1986

Coltelli, M.-B., Maggiore, I. D., Bertoldo, M., Signori, F., Bronco, S., & Ciardelli, F. (2008). Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization. Journal of Applied Polymer Science, 110(2), 1250-1262. doi:10.1002/app.28512

Arrieta, M. P., López, J., Ferrándiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760-768. doi:10.1016/j.polymertesting.2013.03.016

Fortunati, E., Luzi, F., Puglia, D., Dominici, F., Santulli, C., Kenny, J. M., & Torre, L. (2014). Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. European Polymer Journal, 56, 77-91. doi:10.1016/j.eurpolymj.2014.03.030

Marina P. Arrieta, Juan López, Santiago Ferrándiz, & Mercedes A. Peltzer. (2015). EFFECT OF D-LIMONENE ON THE STABILIZATION OF POLY (LACTIC ACID). Acta Horticulturae, (1065), 719-725. doi:10.17660/actahortic.2015.1065.90

Torres, A., Ilabaca, E., Rojas, A., Rodríguez, F., Galotto, M. J., Guarda, A., … Romero, J. (2017). Effect of processing conditions on the physical, chemical and transport properties of polylactic acid films containing thymol incorporated by supercritical impregnation. European Polymer Journal, 89, 195-210. doi:10.1016/j.eurpolymj.2017.01.019

Ramos, M., Jiménez, A., Peltzer, M., & Garrigós, M. C. (2014). Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chemistry, 162, 149-155. doi:10.1016/j.foodchem.2014.04.026

Salazar, R., Domenek, S., Courgneau, C., & Ducruet, V. (2012). Plasticization of poly(lactide) by sorption of volatile organic compounds at low concentration. Polymer Degradation and Stability, 97(10), 1871-1880. doi:10.1016/j.polymdegradstab.2012.03.047

Grillo Fernandes, E., Pietrini, M., & Chiellini, E. (2001). Thermo-Mechanical and Morphological Characterization of Plasticized Poly[(R)-3-hydroxybutyric acid]. Macromolecular Symposia, 169(1), 157-164. doi:10.1002/masy.200451416

Janigová, I., Lacı́k, I., & Chodák, I. (2002). Thermal degradation of plasticized poly(3-hydroxybutyrate) investigated by DSC. Polymer Degradation and Stability, 77(1), 35-41. doi:10.1016/s0141-3910(02)00077-0

Erceg, M., Kovačić, T., & Klarić, I. (2005). Thermal degradation of poly(3-hydroxybutyrate) plasticized with acetyl tributyl citrate. Polymer Degradation and Stability, 90(2), 313-318. doi:10.1016/j.polymdegradstab.2005.04.048

Wang, L., Zhu, W., Wang, X., Chen, X., Chen, G.-Q., & Xu, K. (2007). Processability modifications of poly(3-hydroxybutyrate) by plasticizing, blending, and stabilizing. Journal of Applied Polymer Science, 107(1), 166-173. doi:10.1002/app.27004

Fenollar, O., Garcia-Sanoguera, D., Sanchez-Nacher, L., Boronat, T., López, J., & Balart, R. (2013). Mechanical and Thermal Properties of Polyvinyl Chloride Plasticized with Natural Fatty Acid Esters. Polymer-Plastics Technology and Engineering, 52(8), 761-767. doi:10.1080/03602559.2013.763352

Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009

Arrieta, M. P., López, J., Rayón, E., & Jiménez, A. (2014). Disintegrability under composting conditions of plasticized PLA–PHB blends. Polymer Degradation and Stability, 108, 307-318. doi:10.1016/j.polymdegradstab.2014.01.034

Arrieta, M. P., Castro-López, M. del M., Rayón, E., Barral-Losada, L. F., López-Vilariño, J. M., López, J., & González-Rodríguez, M. V. (2014). Plasticized Poly(lactic acid)–Poly(hydroxybutyrate) (PLA–PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 62(41), 10170-10180. doi:10.1021/jf5029812

Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. doi:10.1016/j.polymdegradstab.2012.11.009

Zhu, P., Chen, Y., Fang, J., Wang, Z., Xie, C., Hou, B., … Xu, F. (2016). Solubility and solution thermodynamics of thymol in six pure organic solvents. The Journal of Chemical Thermodynamics, 92, 198-206. doi:10.1016/j.jct.2015.09.010

Cailloux, J., Hakim, R. N., Santana, O. O., Bou, J., Abt, T., Sánchez-Soto, M., … Maspoch, M. L. (2016). Reactive extrusion: A useful process to manufacture structurally modified PLA/o-MMT composites. Composites Part A: Applied Science and Manufacturing, 88, 106-115. doi:10.1016/j.compositesa.2016.05.024

Fortunati, E., Yang, W., Luzi, F., Kenny, J., Torre, L., & Puglia, D. (2016). Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: an overview. European Polymer Journal, 80, 295-316. doi:10.1016/j.eurpolymj.2016.04.013

Garcia-Garcia, D., Ferri, J. M., Montanes, N., Lopez-Martinez, J., & Balart, R. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International, 65(10), 1157-1164. doi:10.1002/pi.5164

Panaitescu, D. M., Nicolae, C. A., Frone, A. N., Chiulan, I., Stanescu, P. O., Draghici, C., … Mihailescu, M. (2017). Plasticized poly(3-hydroxybutyrate) with improved melt processing and balanced properties. Journal of Applied Polymer Science, 134(19). doi:10.1002/app.44810

Kopinke, F.-D., Remmler, M., Mackenzie, K., Möder, M., & Wachsen, O. (1996). Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid). Polymer Degradation and Stability, 53(3), 329-342. doi:10.1016/0141-3910(96)00102-4

Aoyagi, Y., Yamashita, K., & Doi, Y. (2002). Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide]. Polymer Degradation and Stability, 76(1), 53-59. doi:10.1016/s0141-3910(01)00265-8

Kawalec, M., Adamus, G., Kurcok, P., Kowalczuk, M., Foltran, I., Focarete, M. L., & Scandola, M. (2007). Carboxylate-Induced Degradation of Poly(3-hydroxybutyrate)s. Biomacromolecules, 8(4), 1053-1058. doi:10.1021/bm061155n

Lai, S.-M., Liu, Y.-H., Huang, C.-T., & Don, T.-M. (2017). Miscibility and toughness improvement of poly(lactic acid)/poly(3-Hydroxybutyrate) blends using a melt-induced degradation approach. Journal of Polymer Research, 24(7). doi:10.1007/s10965-017-1253-0

Zhang, J., Tashiro, K., Tsuji, H., & Domb, A. J. (2008). Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(l-lactide) Investigated by Simultaneous Measurements of WAXD and DSC. Macromolecules, 41(4), 1352-1357. doi:10.1021/ma0706071

D’Amico, D. A., Iglesias Montes, M. L., Manfredi, L. B., & Cyras, V. P. (2016). Fully bio-based and biodegradable polylactic acid/poly(3-hydroxybutirate) blends: Use of a common plasticizer as performance improvement strategy. Polymer Testing, 49, 22-28. doi:10.1016/j.polymertesting.2015.11.004

Pachekoski, W. M., Dalmolin, C., & Agnelli, J. A. M. (2014). Blendas poliméricas biodegradáveis de PHB e PLA para fabricação de filmes. Polímeros, 24(4), 501-507. doi:10.1590/0104-1428.1489

Dopico-García, M. S., Ares-Pernas, A., González-Rodríguez, M. V., López-Vilariño, J. M., & Abad-López, M. J. (2012). Commercial biodegradable material for food contact: methodology for assessment of service life. Polymer International, 61(11), 1648-1654. doi:10.1002/pi.4255

Datta, R., Tsai, S.-P., Bonsignore, P., Moon, S.-H., & Frank, J. R. (1995). Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiology Reviews, 16(2-3), 221-231. doi:10.1111/j.1574-6976.1995.tb00168.x

Haugaard, V. K., Danielsen, B., & Bertelsen, G. (2003). Impact of polylactate and poly(hydroxybutyrate) on food quality. European Food Research and Technology, 216(3), 233-240. doi:10.1007/s00217-002-0651-6

Vogler, E. A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 74(1-3), 69-117. doi:10.1016/s0001-8686(97)00040-7

Jordá-Vilaplana, A., Fombuena, V., García-García, D., Samper, M. D., & Sánchez-Nácher, L. (2014). Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment. European Polymer Journal, 58, 23-33. doi:10.1016/j.eurpolymj.2014.06.002

Puglia, D., Fortunati, E., D’Amico, D. A., Manfredi, L. B., Cyras, V. P., & Kenny, J. M. (2014). Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films. Polymer Degradation and Stability, 99, 127-135. doi:10.1016/j.polymdegradstab.2013.11.013

Fombuena, V., García-Sanoguera, D., Sánchez-Nácher, L., Balart, R., & Boronat, T. (2013). Optimization of atmospheric plasma treatment of LDPE films: influence on adhesive properties and ageing behavior. Journal of Adhesion Science and Technology, 28(1), 97-113. doi:10.1080/01694243.2013.847045

Balart, J., Fombuena, V., Boronat, T., Reig, M. J., & Balart, R. (2011). Surface modification of polypropylene substrates by UV photografting of methyl methacrylate (MMA) for improved surface wettability. Journal of Materials Science, 47(5), 2375-2383. doi:10.1007/s10853-011-6056-9

Ada˜o, M. H., Fernandes, A. C., Saramago, B., & Cazabat, A. M. (1998). Influence of preparation method on the surface topography and wetting properties of polystyrene films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 132(2-3), 181-192. doi:10.1016/s0927-7757(97)00095-2

Siracusa, V., Ingrao, C., Karpova, S. G., Olkhov, A. A., & Iordanskii, A. L. (2017). Gas transport and characterization of poly(3 hydroxybutyrate) films. European Polymer Journal, 91, 149-161. doi:10.1016/j.eurpolymj.2017.03.047

Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19(12), 634-643. doi:10.1016/j.tifs.2008.07.003

Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.022

Fortunati, E., Peltzer, M., Armentano, I., Torre, L., Jiménez, A., & Kenny, J. M. (2012). Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydrate Polymers, 90(2), 948-956. doi:10.1016/j.carbpol.2012.06.025

Díez-Pascual, A., & Díez-Vicente, A. (2014). Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties. International Journal of Molecular Sciences, 15(6), 10950-10973. doi:10.3390/ijms150610950

Reddy, M. M., Vivekanandhan, S., Misra, M., Bhatia, S. K., & Mohanty, A. K. (2013). Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, 38(10-11), 1653-1689. doi:10.1016/j.progpolymsci.2013.05.006

Michaels, A. S., & Bixler, H. J. (1961). Solubility of gases in polyethylene. Journal of Polymer Science, 50(154), 393-412. doi:10.1002/pol.1961.1205015411

Arrieta, M. P., Peltzer, M. A., López, J., Garrigós, M. del C., Valente, A. J. M., & Jiménez, A. (2014). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 121, 94-101. doi:10.1016/j.jfoodeng.2013.08.015

Abarca, R. L., Rodríguez, F. J., Guarda, A., Galotto, M. J., Bruna, J. E., Fávaro Perez, M. A., … Padula, M. (2017). Application of β-Cyclodextrin/2-Nonanone Inclusion Complex as Active Agent to Design of Antimicrobial Packaging Films for Control of Botrytis cinerea. Food and Bioprocess Technology, 10(9), 1585-1594. doi:10.1007/s11947-017-1926-z

Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science & Technology, 35(1), 42-51. doi:10.1016/j.tifs.2013.10.008

Peltzer, M., Wagner, J., & Jiménez, A. (2009). Migration study of carvacrol as a natural antioxidant in high-density polyethylene for active packaging. Food Additives & Contaminants: Part A, 26(6), 938-946. doi:10.1080/02652030802712681

De Dicastillo, C., Navarro, R., Guarda, A., & Galotto, M. (2015). Development of Biocomposites with Antioxidant Activity Based on Red Onion Extract and Acetate Cellulose. Antioxidants, 4(3), 533-547. doi:10.3390/antiox4030533

Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. doi:10.1021/jf0502698

Muñoz-Bonilla, A., & Fernández-García, M. (2015). The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. European Polymer Journal, 65, 46-62. doi:10.1016/j.eurpolymj.2015.01.030

Requena, R., Vargas, M., & Chiralt, A. (2017). Release kinetics of carvacrol and eugenol from poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) films for food packaging applications. European Polymer Journal, 92, 185-193. doi:10.1016/j.eurpolymj.2017.05.008

Chien, Y.-C., Liang, C., & Yang, S. (2011). Exploratory study on the pyrolysis and PAH emissions of polylactic acid. Atmospheric Environment, 45(1), 123-127. doi:10.1016/j.atmosenv.2010.09.035

Yagi, H., Ninomiya, F., Funabashi, M., & Kunioka, M. (2013). Thermophilic anaerobic biodegradation test and analysis of eubacteria involved in anaerobic biodegradation of four specified biodegradable polyesters. Polymer Degradation and Stability, 98(6), 1182-1187. doi:10.1016/j.polymdegradstab.2013.03.010

Kale, G., Auras, R., & Singh, S. P. (2006). Degradation of Commercial Biodegradable Packages under Real Composting and Ambient Exposure Conditions. Journal of Polymers and the Environment, 14(3), 317-334. doi:10.1007/s10924-006-0015-6

Musioł, M., Sikorska, W., Adamus, G., Janeczek, H., Richert, J., Malinowski, R., … Kowalczuk, M. (2016). Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions. Waste Management, 52, 69-76. doi:10.1016/j.wasman.2016.04.016

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record