- -

On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arrieta, Marina Patricia es_ES
dc.contributor.author Samper, María-Dolores es_ES
dc.contributor.author Aldas-Carrasco, Miguel Fernando es_ES
dc.contributor.author López-Martínez, Juan es_ES
dc.date.accessioned 2020-07-30T03:34:53Z
dc.date.available 2020-07-30T03:34:53Z
dc.date.issued 2017-08-29 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148886
dc.description.abstract [EN] Poly(lactic acid) (PLA) is the most used biopolymer for food packaging applications. Several strategies have been made to improve PLA properties for extending its applications in the packaging field. Melt blending approaches are gaining considerable interest since they are easy, cost-effective and readily available processing technologies at the industrial level. With a similar melting temperature and high crystallinity, poly(hydroxybutyrate) (PHB) represents a good candidate to blend with PLA. The ability of PHB to act as a nucleating agent for PLA improves its mechanical resistance and barrier performance. With the dual objective to improve PLAPHB processing performance and to obtain stretchable materials, plasticizers are frequently added. Current trends to enhance PLA-PHB miscibility are focused on the development of composite and nanocomposites. PLA-PHB blends are also interesting for the controlled release of active compounds in the development of active packaging systems. This review explains the most relevant processing aspects of PLA-PHB based blends such as the influence of polymers molecular weight, the PLA-PHB composition as well as the thermal stability. It also summarizes the recent developments in PLA-PHB formulations with an emphasis on their performance with interest in the sustainable food packaging field. PLA-PHB blends shows highly promising perspectives for the replacement of traditional petrochemical based polymers currently used for food packaging. es_ES
dc.description.sponsorship This research was performed within the framework of the project MAT2014-59242-C2-1-R supported by the Spanish Ministry of Economy and Competitiveness (MINECO). Marina Patricia Arrieta is a recipient of Juan de la Cierva Post-Doctoral Contract (FJCI-2014-20630) from the MINECO. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Materials es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Food packaging es_ES
dc.subject Biopolymers es_ES
dc.subject Biodegradable es_ES
dc.subject Poly(lactic acid) es_ES
dc.subject Poly(hydroxybutyrate) es_ES
dc.subject Blends es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ma10091008 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FJCI-2014-20630/ES/FJCI-2014-20630/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2014-59242-C2-1-R/ES/TECNICAS AVANZADAS DE PROCESADO PARA SISTEMAS ACTIVOS ENCAPSULADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2011-28468-C02-02/ES/PROCESADO DE SISTEMAS LAMINADOS EN BASE BIOPOLIMERICA PARA EL ENVASADO ACTIVO DE ALIMENTOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Arrieta, MP.; Samper, M.; Aldas-Carrasco, MF.; López-Martínez, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials. 10(9):1-26. https://doi.org/10.3390/ma10091008 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ma10091008 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 26 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 1996-1944 es_ES
dc.identifier.pmid 28850102 es_ES
dc.identifier.pmcid PMC5615663 es_ES
dc.relation.pasarela S\346213 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Cleo, G., Isenring, E., Thomas, R., & Glasziou, P. (2017). Could habits hold the key to weight loss maintenance? A narrative review. Journal of Human Nutrition and Dietetics, 30(5), 655-664. doi:10.1111/jhn.12456 es_ES
dc.description.references Jin, T., & Zhang, H. (2008). Biodegradable Polylactic Acid Polymer with Nisin for Use in Antimicrobial Food Packaging. Journal of Food Science, 73(3), M127-M134. doi:10.1111/j.1750-3841.2008.00681.x es_ES
dc.description.references Castro López, M. del M., Dopico García, S., Ares Pernas, A., López Vilariño, J. M., & González Rodríguez, M. V. (2012). Effect of PPG-PEG-PPG on the Tocopherol-Controlled Release from Films Intended for Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 60(33), 8163-8170. doi:10.1021/jf301442p es_ES
dc.description.references Arrieta, M. P., Fortunati, E., Dominici, F., López, J., & Kenny, J. M. (2015). Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 121, 265-275. doi:10.1016/j.carbpol.2014.12.056 es_ES
dc.description.references Souza, V. G. L., & Fernando, A. L. (2016). Nanoparticles in food packaging: Biodegradability and potential migration to food—A review. Food Packaging and Shelf Life, 8, 63-70. doi:10.1016/j.fpsl.2016.04.001 es_ES
dc.description.references Lagaron, J. M., & Lopez-Rubio, A. (2011). Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends in Food Science & Technology, 22(11), 611-617. doi:10.1016/j.tifs.2011.01.007 es_ES
dc.description.references Briassoulis, D., & Dejean, C. (2010). Critical Review of Norms and Standards for Biodegradable Agricultural Plastics Part Ι. Biodegradation in Soil. Journal of Polymers and the Environment, 18(3), 384-400. doi:10.1007/s10924-010-0168-1 es_ES
dc.description.references Avérous, L. (2004). Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44(3), 231-274. doi:10.1081/mc-200029326 es_ES
dc.description.references Auras, R., Harte, B., & Selke, S. (2004). An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience, 4(9), 835-864. doi:10.1002/mabi.200400043 es_ES
dc.description.references Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S. E., & Singh, S. P. (2007). Compostability of Bioplastic Packaging Materials: An Overview. Macromolecular Bioscience, 7(3), 255-277. doi:10.1002/mabi.200600168 es_ES
dc.description.references Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940 es_ES
dc.description.references Bor, Y., Alin, J., & Hakkarainen, M. (2012). Electrospray Ionization-Mass Spectrometry Analysis Reveals Migration of Cyclic Lactide Oligomers from Polylactide Packaging in Contact with Ethanolic Food Simulant. Packaging Technology and Science, 25(7), 427-433. doi:10.1002/pts.990 es_ES
dc.description.references Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-571. doi:10.1111/j.1541-4337.2010.00126.x es_ES
dc.description.references Carrasco, F., Cailloux, J., Sánchez-Jiménez, P. E., & Maspoch, M. L. (2014). Improvement of the thermal stability of branched poly(lactic acid) obtained by reactive extrusion. Polymer Degradation and Stability, 104, 40-49. doi:10.1016/j.polymdegradstab.2014.03.026 es_ES
dc.description.references Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17-46. doi:10.1016/j.addr.2016.04.003 es_ES
dc.description.references Arrieta, M. P., & Peponi, L. (2017). Polyurethane based on PLA and PCL incorporated with catechin: Structural, thermal and mechanical characterization. European Polymer Journal, 89, 174-184. doi:10.1016/j.eurpolymj.2017.02.028 es_ES
dc.description.references Yuan, M. W., Qin, Y. Y., Yang, J. Y., Wu, Y., Yuan, M. L., & Li, H. L. (2013). Preparation and Characterization of Poly(L-Lactide-Co-ε-Caprolactone) Copolymer for Food Packaging Application. Advanced Materials Research, 779-780, 231-234. doi:10.4028/www.scientific.net/amr.779-780.231 es_ES
dc.description.references Arrieta, M. P., Samper, M. D., López, J., & Jiménez, A. (2014). Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. Journal of Polymers and the Environment, 22(4), 460-470. doi:10.1007/s10924-014-0654-y es_ES
dc.description.references Cruz-Romero, M. (2008). Crop-based biodegradable packaging and its environmental implications. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 3(074). doi:10.1079/pavsnnr20083074 es_ES
dc.description.references Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082 es_ES
dc.description.references Luzi, F., Fortunati, E., Jiménez, A., Puglia, D., Pezzolla, D., Gigliotti, G., … Torre, L. (2016). Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Industrial Crops and Products, 93, 276-289. doi:10.1016/j.indcrop.2016.01.045 es_ES
dc.description.references González-Ausejo, J., Sánchez-Safont, E., Lagarón, J. M., Balart, R., Cabedo, L., & Gámez-Pérez, J. (2017). Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-poly(lactic acid) blends with diisocyanates. Journal of Applied Polymer Science, 134(20). doi:10.1002/app.44806 es_ES
dc.description.references Arrieta, M. P., Fortunati, E., Dominici, F., Rayón, E., López, J., & Kenny, J. M. (2014). PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polymer Degradation and Stability, 107, 139-149. doi:10.1016/j.polymdegradstab.2014.05.010 es_ES
dc.description.references Ljungberg, N., & Wesslén, B. (2005). Preparation and Properties of Plasticized Poly(lactic acid) Films. Biomacromolecules, 6(3), 1789-1796. doi:10.1021/bm050098f es_ES
dc.description.references Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079 es_ES
dc.description.references Garcia-Garcia, D., Ferri, J. M., Boronat, T., Lopez-Martinez, J., & Balart, R. (2016). Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties. Polymer Bulletin, 73(12), 3333-3350. doi:10.1007/s00289-016-1659-6 es_ES
dc.description.references Khosravi-Darani, K. (2015). Application of Poly(hydroxyalkanoate) In Food Packaging: Improvements by Nanotechnology. Chemical and Biochemical Engineering Quarterly, 29(2), 275-285. doi:10.15255/cabeq.2014.2260 es_ES
dc.description.references Sánchez-Safont, E. L., González-Ausejo, J., Gámez-Pérez, J., Lagarón, J. M., & Cabedo, L. (2016). Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Purified Cellulose Fiber Composites by Melt Blending: Characterization and Degradation in Composting Conditions. Journal of Renewable Materials, 4(2), 123-132. doi:10.7569/jrm.2015.634127 es_ES
dc.description.references González-Ausejo, J., Sanchez-Safont, E., Lagaron, J. M., Olsson, R. T., Gamez-Perez, J., & Cabedo, L. (2017). Assessing the thermoformability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(acid lactic) blends compatibilized with diisocyanates. Polymer Testing, 62, 235-245. doi:10.1016/j.polymertesting.2017.06.026 es_ES
dc.description.references Bucci, D. Z., Tavares, L. B. B., & Sell, I. (2005). PHB packaging for the storage of food products. Polymer Testing, 24(5), 564-571. doi:10.1016/j.polymertesting.2005.02.008 es_ES
dc.description.references Lenz, R. W., & Marchessault, R. H. (2005). Bacterial Polyesters:  Biosynthesis, Biodegradable Plastics and Biotechnology. Biomacromolecules, 6(1), 1-8. doi:10.1021/bm049700c es_ES
dc.description.references Moire, L., Rezzonico, E., & Poirier, Y. (2003). Synthesis of novel biomaterials in plants. Journal of Plant Physiology, 160(7), 831-839. doi:10.1078/0176-1617-01030 es_ES
dc.description.references Gracida, J., Alba, J., Cardoso, J., & Perez-Guevara, F. (2004). Studies of biodegradation of binary blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) with poly(2-hydroxyethylmetacrilate) (PHEMA). Polymer Degradation and Stability, 83(2), 247-253. doi:10.1016/s0141-3910(03)00269-6 es_ES
dc.description.references Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology, 30(2), 67-79. doi:10.1002/adv.20235 es_ES
dc.description.references Garcia-Garcia, D., Rayón, E., Carbonell-Verdu, A., Lopez-Martinez, J., & Balart, R. (2017). Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. European Polymer Journal, 86, 41-57. doi:10.1016/j.eurpolymj.2016.11.018 es_ES
dc.description.references Bucci, D. Z., Tavares, L. B. B., & Sell, I. (2007). Biodegradation and physical evaluation of PHB packaging. Polymer Testing, 26(7), 908-915. doi:10.1016/j.polymertesting.2007.06.013 es_ES
dc.description.references Arrieta, M. P., Fortunati, E., Dominici, F., Rayón, E., López, J., & Kenny, J. M. (2014). Multifunctional PLA–PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohydrate Polymers, 107, 16-24. doi:10.1016/j.carbpol.2014.02.044 es_ES
dc.description.references S. de O. Patrício, P., Pereira, F. V., dos Santos, M. C., de Souza, P. P., Roa, J. P. B., & Orefice, R. L. (2012). Increasing the elongation at break of polyhydroxybutyrate biopolymer: Effect of cellulose nanowhiskers on mechanical and thermal properties. Journal of Applied Polymer Science, 127(5), 3613-3621. doi:10.1002/app.37811 es_ES
dc.description.references European Bioplasticshttp://www.european-bioplastics.org/market/ es_ES
dc.description.references Hu, Y., Sato, H., Zhang, J., Noda, I., & Ozaki, Y. (2008). Crystallization behavior of poly(l-lactic acid) affected by the addition of a small amount of poly(3-hydroxybutyrate). Polymer, 49(19), 4204-4210. doi:10.1016/j.polymer.2008.07.031 es_ES
dc.description.references Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2015). Development of flexible materials based on plasticized electrospun PLA–PHB blends: Structural, thermal, mechanical and disintegration properties. European Polymer Journal, 73, 433-446. doi:10.1016/j.eurpolymj.2015.10.036 es_ES
dc.description.references Calvão, P. S., Chenal, J.-M., Gauthier, C., Demarquette, N. R., Bogner, A., & Cavaille, J. Y. (2011). Understanding the mechanical and biodegradation behaviour of poly(hydroxybutyrate)/rubber blends in relation to their morphology. Polymer International, 61(3), 434-441. doi:10.1002/pi.3211 es_ES
dc.description.references Blümm, E., & Owen, A. J. (1995). Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/ poly(l-lactide) blends. Polymer, 36(21), 4077-4081. doi:10.1016/0032-3861(95)90987-d es_ES
dc.description.references Chang, L., & Woo, E. M. (2012). Crystallization of poly(3-hydroxybutyrate) with stereocomplexed polylactide as biodegradable nucleation agent. Polymer Engineering & Science, 52(7), 1413-1419. doi:10.1002/pen.23081 es_ES
dc.description.references Ni, C., Luo, R., Xu, K., & Chen, G.-Q. (2009). Thermal and crystallinity property studies of poly (L-lactic acid) blended with oligomers of 3-hydroxybutyrate or dendrimers of hydroxyalkanoic acids. Journal of Applied Polymer Science, 111(4), 1720-1727. doi:10.1002/app.29182 es_ES
dc.description.references Vogel, C., & Siesler, H. W. (2008). Thermal Degradation of Poly(ɛ-caprolactone), Poly(L-lactic acid) and their Blends with Poly(3-hydroxy-butyrate) Studied by TGA/FT-IR Spectroscopy. Macromolecular Symposia, 265(1), 183-194. doi:10.1002/masy.200850520 es_ES
dc.description.references Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009 es_ES
dc.description.references Ohkoshi, I., Abe, H., & Doi, Y. (2000). Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate]. Polymer, 41(15), 5985-5992. doi:10.1016/s0032-3861(99)00781-8 es_ES
dc.description.references Tri, P. N., Domenek, S., Guinault, A., & Sollogoub, C. (2013). Crystallization behavior of poly(lactide)/poly(β-hydroxybutyrate)/talc composites. Journal of Applied Polymer Science, 129(6), 3355-3365. doi:10.1002/app.39056 es_ES
dc.description.references Zhang, L., Xiong, C., & Deng, X. (1996). Miscibility, crystallization and morphology of poly(β-hydroxybutyrate)/poly(d,l-lactide) blends. Polymer, 37(2), 235-241. doi:10.1016/0032-3861(96)81093-7 es_ES
dc.description.references Musioł, M., Sikorska, W., Adamus, G., Janeczek, H., Kowalczuk, M., & Rydz, J. (2015). (Bio)degradable polymers as a potential material for food packaging: studies on the (bio)degradation process of PLA/(R,S)-PHB rigid foils under industrial composting conditions. European Food Research and Technology, 242(6), 815-823. doi:10.1007/s00217-015-2611-y es_ES
dc.description.references Bartczak, Z., Galeski, A., Kowalczuk, M., Sobota, M., & Malinowski, R. (2013). Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate) – morphology and properties. European Polymer Journal, 49(11), 3630-3641. doi:10.1016/j.eurpolymj.2013.07.033 es_ES
dc.description.references Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. doi:10.1016/j.progpolymsci.2008.05.004 es_ES
dc.description.references Drumright, R. E., Gruber, P. R., & Henton, D. E. (2000). Polylactic Acid Technology. Advanced Materials, 12(23), 1841-1846. doi:10.1002/1521-4095(200012)12:23<1841::aid-adma1841>3.0.co;2-e es_ES
dc.description.references Jandas, P. J., Mohanty, S., & Nayak, S. K. (2013). Morphology and Thermal Properties of Renewable Resource-Based Polymer Blend Nanocomposites Influenced by a Reactive Compatibilizer. ACS Sustainable Chemistry & Engineering, 2(3), 377-386. doi:10.1021/sc400395s es_ES
dc.description.references Dong, W., Ma, P., Wang, S., Chen, M., Cai, X., & Zhang, Y. (2013). Effect of partial crosslinking on morphology and properties of the poly(β-hydroxybutyrate)/poly(d,l-lactic acid) blends. Polymer Degradation and Stability, 98(9), 1549-1555. doi:10.1016/j.polymdegradstab.2013.06.033 es_ES
dc.description.references Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2016). Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products, 93, 290-301. doi:10.1016/j.indcrop.2015.12.058 es_ES
dc.description.references Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2016). Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites. Polymer Degradation and Stability, 132, 145-156. doi:10.1016/j.polymdegradstab.2016.02.027 es_ES
dc.description.references Toncheva, A., Spasova, M., Paneva, D., Manolova, N., & Rashkov, I. (2014). Polylactide (PLA)-Based Electrospun Fibrous Materials Containing Ionic Drugs as Wound Dressing Materials: A Review. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(13), 657-671. doi:10.1080/00914037.2013.854240 es_ES
dc.description.references Abdelwahab, M. A., Flynn, A., Chiou, B.-S., Imam, S., Orts, W., & Chiellini, E. (2012). Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polymer Degradation and Stability, 97(9), 1822-1828. doi:10.1016/j.polymdegradstab.2012.05.036 es_ES
dc.description.references Burgos, N., Armentano, I., Fortunati, E., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2017). Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging. Food and Bioprocess Technology, 10(4), 770-780. doi:10.1007/s11947-016-1846-3 es_ES
dc.description.references Kiziltas, A., Nazari, B., Erbas Kiziltas, E., Gardner, D. J., Han, Y., & Rushing, T. S. (2016). Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system. Carbohydrate Polymers, 140, 393-399. doi:10.1016/j.carbpol.2015.12.059 es_ES
dc.description.references Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Bio-based PLA_PHB plasticized blend films: Processing and structural characterization. LWT - Food Science and Technology, 64(2), 980-988. doi:10.1016/j.lwt.2015.06.032 es_ES
dc.description.references Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters, 9(7), 583-596. doi:10.3144/expresspolymlett.2015.55 es_ES
dc.description.references Murariu, M., Da Silva Ferreira, A., Alexandre, M., & Dubois, P. (2008). Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polymers for Advanced Technologies, 19(6), 636-646. doi:10.1002/pat.1131 es_ES
dc.description.references Martin, O., & Avérous, L. (2001). Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209-6219. doi:10.1016/s0032-3861(01)00086-6 es_ES
dc.description.references Burgos, N., Tolaguera, D., Fiori, S., & Jiménez, A. (2013). Synthesis and Characterization of Lactic Acid Oligomers: Evaluation of Performance as Poly(Lactic Acid) Plasticizers. Journal of Polymers and the Environment, 22(2), 227-235. doi:10.1007/s10924-013-0628-5 es_ES
dc.description.references Martino, V. P., Jiménez, A., Ruseckaite, R. A., & Avérous, L. (2010). Structure and properties of clay nano-biocomposites based on poly(lactic acid) plasticized with polyadipates. Polymers for Advanced Technologies, 22(12), 2206-2213. doi:10.1002/pat.1747 es_ES
dc.description.references Courgneau, C., Domenek, S., Guinault, A., Avérous, L., & Ducruet, V. (2011). Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly(Lactic Acid). Journal of Polymers and the Environment, 19(2), 362-371. doi:10.1007/s10924-011-0285-5 es_ES
dc.description.references Maiza, M., Benaniba, M. T., Quintard, G., & Massardier-Nageotte, V. (2015). Biobased additive plasticizing Polylactic acid (PLA). Polímeros, 25(6), 581-590. doi:10.1590/0104-1428.1986 es_ES
dc.description.references Coltelli, M.-B., Maggiore, I. D., Bertoldo, M., Signori, F., Bronco, S., & Ciardelli, F. (2008). Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization. Journal of Applied Polymer Science, 110(2), 1250-1262. doi:10.1002/app.28512 es_ES
dc.description.references Arrieta, M. P., López, J., Ferrándiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760-768. doi:10.1016/j.polymertesting.2013.03.016 es_ES
dc.description.references Fortunati, E., Luzi, F., Puglia, D., Dominici, F., Santulli, C., Kenny, J. M., & Torre, L. (2014). Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. European Polymer Journal, 56, 77-91. doi:10.1016/j.eurpolymj.2014.03.030 es_ES
dc.description.references Marina P. Arrieta, Juan López, Santiago Ferrándiz, & Mercedes A. Peltzer. (2015). EFFECT OF D-LIMONENE ON THE STABILIZATION OF POLY (LACTIC ACID). Acta Horticulturae, (1065), 719-725. doi:10.17660/actahortic.2015.1065.90 es_ES
dc.description.references Torres, A., Ilabaca, E., Rojas, A., Rodríguez, F., Galotto, M. J., Guarda, A., … Romero, J. (2017). Effect of processing conditions on the physical, chemical and transport properties of polylactic acid films containing thymol incorporated by supercritical impregnation. European Polymer Journal, 89, 195-210. doi:10.1016/j.eurpolymj.2017.01.019 es_ES
dc.description.references Ramos, M., Jiménez, A., Peltzer, M., & Garrigós, M. C. (2014). Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chemistry, 162, 149-155. doi:10.1016/j.foodchem.2014.04.026 es_ES
dc.description.references Salazar, R., Domenek, S., Courgneau, C., & Ducruet, V. (2012). Plasticization of poly(lactide) by sorption of volatile organic compounds at low concentration. Polymer Degradation and Stability, 97(10), 1871-1880. doi:10.1016/j.polymdegradstab.2012.03.047 es_ES
dc.description.references Grillo Fernandes, E., Pietrini, M., & Chiellini, E. (2001). Thermo-Mechanical and Morphological Characterization of Plasticized Poly[(R)-3-hydroxybutyric acid]. Macromolecular Symposia, 169(1), 157-164. doi:10.1002/masy.200451416 es_ES
dc.description.references Janigová, I., Lacı́k, I., & Chodák, I. (2002). Thermal degradation of plasticized poly(3-hydroxybutyrate) investigated by DSC. Polymer Degradation and Stability, 77(1), 35-41. doi:10.1016/s0141-3910(02)00077-0 es_ES
dc.description.references Erceg, M., Kovačić, T., & Klarić, I. (2005). Thermal degradation of poly(3-hydroxybutyrate) plasticized with acetyl tributyl citrate. Polymer Degradation and Stability, 90(2), 313-318. doi:10.1016/j.polymdegradstab.2005.04.048 es_ES
dc.description.references Wang, L., Zhu, W., Wang, X., Chen, X., Chen, G.-Q., & Xu, K. (2007). Processability modifications of poly(3-hydroxybutyrate) by plasticizing, blending, and stabilizing. Journal of Applied Polymer Science, 107(1), 166-173. doi:10.1002/app.27004 es_ES
dc.description.references Fenollar, O., Garcia-Sanoguera, D., Sanchez-Nacher, L., Boronat, T., López, J., & Balart, R. (2013). Mechanical and Thermal Properties of Polyvinyl Chloride Plasticized with Natural Fatty Acid Esters. Polymer-Plastics Technology and Engineering, 52(8), 761-767. doi:10.1080/03602559.2013.763352 es_ES
dc.description.references Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009 es_ES
dc.description.references Arrieta, M. P., López, J., Rayón, E., & Jiménez, A. (2014). Disintegrability under composting conditions of plasticized PLA–PHB blends. Polymer Degradation and Stability, 108, 307-318. doi:10.1016/j.polymdegradstab.2014.01.034 es_ES
dc.description.references Arrieta, M. P., Castro-López, M. del M., Rayón, E., Barral-Losada, L. F., López-Vilariño, J. M., López, J., & González-Rodríguez, M. V. (2014). Plasticized Poly(lactic acid)–Poly(hydroxybutyrate) (PLA–PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 62(41), 10170-10180. doi:10.1021/jf5029812 es_ES
dc.description.references Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. doi:10.1016/j.polymdegradstab.2012.11.009 es_ES
dc.description.references Zhu, P., Chen, Y., Fang, J., Wang, Z., Xie, C., Hou, B., … Xu, F. (2016). Solubility and solution thermodynamics of thymol in six pure organic solvents. The Journal of Chemical Thermodynamics, 92, 198-206. doi:10.1016/j.jct.2015.09.010 es_ES
dc.description.references Cailloux, J., Hakim, R. N., Santana, O. O., Bou, J., Abt, T., Sánchez-Soto, M., … Maspoch, M. L. (2016). Reactive extrusion: A useful process to manufacture structurally modified PLA/o-MMT composites. Composites Part A: Applied Science and Manufacturing, 88, 106-115. doi:10.1016/j.compositesa.2016.05.024 es_ES
dc.description.references Fortunati, E., Yang, W., Luzi, F., Kenny, J., Torre, L., & Puglia, D. (2016). Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: an overview. European Polymer Journal, 80, 295-316. doi:10.1016/j.eurpolymj.2016.04.013 es_ES
dc.description.references Garcia-Garcia, D., Ferri, J. M., Montanes, N., Lopez-Martinez, J., & Balart, R. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International, 65(10), 1157-1164. doi:10.1002/pi.5164 es_ES
dc.description.references Panaitescu, D. M., Nicolae, C. A., Frone, A. N., Chiulan, I., Stanescu, P. O., Draghici, C., … Mihailescu, M. (2017). Plasticized poly(3-hydroxybutyrate) with improved melt processing and balanced properties. Journal of Applied Polymer Science, 134(19). doi:10.1002/app.44810 es_ES
dc.description.references Kopinke, F.-D., Remmler, M., Mackenzie, K., Möder, M., & Wachsen, O. (1996). Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid). Polymer Degradation and Stability, 53(3), 329-342. doi:10.1016/0141-3910(96)00102-4 es_ES
dc.description.references Aoyagi, Y., Yamashita, K., & Doi, Y. (2002). Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide]. Polymer Degradation and Stability, 76(1), 53-59. doi:10.1016/s0141-3910(01)00265-8 es_ES
dc.description.references Kawalec, M., Adamus, G., Kurcok, P., Kowalczuk, M., Foltran, I., Focarete, M. L., & Scandola, M. (2007). Carboxylate-Induced Degradation of Poly(3-hydroxybutyrate)s. Biomacromolecules, 8(4), 1053-1058. doi:10.1021/bm061155n es_ES
dc.description.references Lai, S.-M., Liu, Y.-H., Huang, C.-T., & Don, T.-M. (2017). Miscibility and toughness improvement of poly(lactic acid)/poly(3-Hydroxybutyrate) blends using a melt-induced degradation approach. Journal of Polymer Research, 24(7). doi:10.1007/s10965-017-1253-0 es_ES
dc.description.references Zhang, J., Tashiro, K., Tsuji, H., & Domb, A. J. (2008). Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(l-lactide) Investigated by Simultaneous Measurements of WAXD and DSC. Macromolecules, 41(4), 1352-1357. doi:10.1021/ma0706071 es_ES
dc.description.references D’Amico, D. A., Iglesias Montes, M. L., Manfredi, L. B., & Cyras, V. P. (2016). Fully bio-based and biodegradable polylactic acid/poly(3-hydroxybutirate) blends: Use of a common plasticizer as performance improvement strategy. Polymer Testing, 49, 22-28. doi:10.1016/j.polymertesting.2015.11.004 es_ES
dc.description.references Pachekoski, W. M., Dalmolin, C., & Agnelli, J. A. M. (2014). Blendas poliméricas biodegradáveis de PHB e PLA para fabricação de filmes. Polímeros, 24(4), 501-507. doi:10.1590/0104-1428.1489 es_ES
dc.description.references Dopico-García, M. S., Ares-Pernas, A., González-Rodríguez, M. V., López-Vilariño, J. M., & Abad-López, M. J. (2012). Commercial biodegradable material for food contact: methodology for assessment of service life. Polymer International, 61(11), 1648-1654. doi:10.1002/pi.4255 es_ES
dc.description.references Datta, R., Tsai, S.-P., Bonsignore, P., Moon, S.-H., & Frank, J. R. (1995). Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiology Reviews, 16(2-3), 221-231. doi:10.1111/j.1574-6976.1995.tb00168.x es_ES
dc.description.references Haugaard, V. K., Danielsen, B., & Bertelsen, G. (2003). Impact of polylactate and poly(hydroxybutyrate) on food quality. European Food Research and Technology, 216(3), 233-240. doi:10.1007/s00217-002-0651-6 es_ES
dc.description.references Vogler, E. A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 74(1-3), 69-117. doi:10.1016/s0001-8686(97)00040-7 es_ES
dc.description.references Jordá-Vilaplana, A., Fombuena, V., García-García, D., Samper, M. D., & Sánchez-Nácher, L. (2014). Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment. European Polymer Journal, 58, 23-33. doi:10.1016/j.eurpolymj.2014.06.002 es_ES
dc.description.references Puglia, D., Fortunati, E., D’Amico, D. A., Manfredi, L. B., Cyras, V. P., & Kenny, J. M. (2014). Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films. Polymer Degradation and Stability, 99, 127-135. doi:10.1016/j.polymdegradstab.2013.11.013 es_ES
dc.description.references Fombuena, V., García-Sanoguera, D., Sánchez-Nácher, L., Balart, R., & Boronat, T. (2013). Optimization of atmospheric plasma treatment of LDPE films: influence on adhesive properties and ageing behavior. Journal of Adhesion Science and Technology, 28(1), 97-113. doi:10.1080/01694243.2013.847045 es_ES
dc.description.references Balart, J., Fombuena, V., Boronat, T., Reig, M. J., & Balart, R. (2011). Surface modification of polypropylene substrates by UV photografting of methyl methacrylate (MMA) for improved surface wettability. Journal of Materials Science, 47(5), 2375-2383. doi:10.1007/s10853-011-6056-9 es_ES
dc.description.references Ada˜o, M. H., Fernandes, A. C., Saramago, B., & Cazabat, A. M. (1998). Influence of preparation method on the surface topography and wetting properties of polystyrene films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 132(2-3), 181-192. doi:10.1016/s0927-7757(97)00095-2 es_ES
dc.description.references Siracusa, V., Ingrao, C., Karpova, S. G., Olkhov, A. A., & Iordanskii, A. L. (2017). Gas transport and characterization of poly(3 hydroxybutyrate) films. European Polymer Journal, 91, 149-161. doi:10.1016/j.eurpolymj.2017.03.047 es_ES
dc.description.references Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19(12), 634-643. doi:10.1016/j.tifs.2008.07.003 es_ES
dc.description.references Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.022 es_ES
dc.description.references Fortunati, E., Peltzer, M., Armentano, I., Torre, L., Jiménez, A., & Kenny, J. M. (2012). Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydrate Polymers, 90(2), 948-956. doi:10.1016/j.carbpol.2012.06.025 es_ES
dc.description.references Díez-Pascual, A., & Díez-Vicente, A. (2014). Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties. International Journal of Molecular Sciences, 15(6), 10950-10973. doi:10.3390/ijms150610950 es_ES
dc.description.references Reddy, M. M., Vivekanandhan, S., Misra, M., Bhatia, S. K., & Mohanty, A. K. (2013). Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, 38(10-11), 1653-1689. doi:10.1016/j.progpolymsci.2013.05.006 es_ES
dc.description.references Michaels, A. S., & Bixler, H. J. (1961). Solubility of gases in polyethylene. Journal of Polymer Science, 50(154), 393-412. doi:10.1002/pol.1961.1205015411 es_ES
dc.description.references Arrieta, M. P., Peltzer, M. A., López, J., Garrigós, M. del C., Valente, A. J. M., & Jiménez, A. (2014). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 121, 94-101. doi:10.1016/j.jfoodeng.2013.08.015 es_ES
dc.description.references Abarca, R. L., Rodríguez, F. J., Guarda, A., Galotto, M. J., Bruna, J. E., Fávaro Perez, M. A., … Padula, M. (2017). Application of β-Cyclodextrin/2-Nonanone Inclusion Complex as Active Agent to Design of Antimicrobial Packaging Films for Control of Botrytis cinerea. Food and Bioprocess Technology, 10(9), 1585-1594. doi:10.1007/s11947-017-1926-z es_ES
dc.description.references Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science & Technology, 35(1), 42-51. doi:10.1016/j.tifs.2013.10.008 es_ES
dc.description.references Peltzer, M., Wagner, J., & Jiménez, A. (2009). Migration study of carvacrol as a natural antioxidant in high-density polyethylene for active packaging. Food Additives & Contaminants: Part A, 26(6), 938-946. doi:10.1080/02652030802712681 es_ES
dc.description.references De Dicastillo, C., Navarro, R., Guarda, A., & Galotto, M. (2015). Development of Biocomposites with Antioxidant Activity Based on Red Onion Extract and Acetate Cellulose. Antioxidants, 4(3), 533-547. doi:10.3390/antiox4030533 es_ES
dc.description.references Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. doi:10.1021/jf0502698 es_ES
dc.description.references Muñoz-Bonilla, A., & Fernández-García, M. (2015). The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. European Polymer Journal, 65, 46-62. doi:10.1016/j.eurpolymj.2015.01.030 es_ES
dc.description.references Requena, R., Vargas, M., & Chiralt, A. (2017). Release kinetics of carvacrol and eugenol from poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) films for food packaging applications. European Polymer Journal, 92, 185-193. doi:10.1016/j.eurpolymj.2017.05.008 es_ES
dc.description.references Chien, Y.-C., Liang, C., & Yang, S. (2011). Exploratory study on the pyrolysis and PAH emissions of polylactic acid. Atmospheric Environment, 45(1), 123-127. doi:10.1016/j.atmosenv.2010.09.035 es_ES
dc.description.references Yagi, H., Ninomiya, F., Funabashi, M., & Kunioka, M. (2013). Thermophilic anaerobic biodegradation test and analysis of eubacteria involved in anaerobic biodegradation of four specified biodegradable polyesters. Polymer Degradation and Stability, 98(6), 1182-1187. doi:10.1016/j.polymdegradstab.2013.03.010 es_ES
dc.description.references Kale, G., Auras, R., & Singh, S. P. (2006). Degradation of Commercial Biodegradable Packages under Real Composting and Ambient Exposure Conditions. Journal of Polymers and the Environment, 14(3), 317-334. doi:10.1007/s10924-006-0015-6 es_ES
dc.description.references Musioł, M., Sikorska, W., Adamus, G., Janeczek, H., Richert, J., Malinowski, R., … Kowalczuk, M. (2016). Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions. Waste Management, 52, 69-76. doi:10.1016/j.wasman.2016.04.016 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem