Mostrar el registro sencillo del ítem
dc.contributor.author | Arrieta, Marina Patricia | es_ES |
dc.contributor.author | Samper, María-Dolores | es_ES |
dc.contributor.author | Aldas-Carrasco, Miguel Fernando | es_ES |
dc.contributor.author | López-Martínez, Juan | es_ES |
dc.date.accessioned | 2020-07-30T03:34:53Z | |
dc.date.available | 2020-07-30T03:34:53Z | |
dc.date.issued | 2017-08-29 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148886 | |
dc.description.abstract | [EN] Poly(lactic acid) (PLA) is the most used biopolymer for food packaging applications. Several strategies have been made to improve PLA properties for extending its applications in the packaging field. Melt blending approaches are gaining considerable interest since they are easy, cost-effective and readily available processing technologies at the industrial level. With a similar melting temperature and high crystallinity, poly(hydroxybutyrate) (PHB) represents a good candidate to blend with PLA. The ability of PHB to act as a nucleating agent for PLA improves its mechanical resistance and barrier performance. With the dual objective to improve PLAPHB processing performance and to obtain stretchable materials, plasticizers are frequently added. Current trends to enhance PLA-PHB miscibility are focused on the development of composite and nanocomposites. PLA-PHB blends are also interesting for the controlled release of active compounds in the development of active packaging systems. This review explains the most relevant processing aspects of PLA-PHB based blends such as the influence of polymers molecular weight, the PLA-PHB composition as well as the thermal stability. It also summarizes the recent developments in PLA-PHB formulations with an emphasis on their performance with interest in the sustainable food packaging field. PLA-PHB blends shows highly promising perspectives for the replacement of traditional petrochemical based polymers currently used for food packaging. | es_ES |
dc.description.sponsorship | This research was performed within the framework of the project MAT2014-59242-C2-1-R supported by the Spanish Ministry of Economy and Competitiveness (MINECO). Marina Patricia Arrieta is a recipient of Juan de la Cierva Post-Doctoral Contract (FJCI-2014-20630) from the MINECO. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Materials | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Food packaging | es_ES |
dc.subject | Biopolymers | es_ES |
dc.subject | Biodegradable | es_ES |
dc.subject | Poly(lactic acid) | es_ES |
dc.subject | Poly(hydroxybutyrate) | es_ES |
dc.subject | Blends | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ma10091008 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FJCI-2014-20630/ES/FJCI-2014-20630/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2014-59242-C2-1-R/ES/TECNICAS AVANZADAS DE PROCESADO PARA SISTEMAS ACTIVOS ENCAPSULADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2011-28468-C02-02/ES/PROCESADO DE SISTEMAS LAMINADOS EN BASE BIOPOLIMERICA PARA EL ENVASADO ACTIVO DE ALIMENTOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Arrieta, MP.; Samper, M.; Aldas-Carrasco, MF.; López-Martínez, J. (2017). On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials. 10(9):1-26. https://doi.org/10.3390/ma10091008 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ma10091008 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 26 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 1996-1944 | es_ES |
dc.identifier.pmid | 28850102 | es_ES |
dc.identifier.pmcid | PMC5615663 | es_ES |
dc.relation.pasarela | S\346213 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Cleo, G., Isenring, E., Thomas, R., & Glasziou, P. (2017). Could habits hold the key to weight loss maintenance? A narrative review. Journal of Human Nutrition and Dietetics, 30(5), 655-664. doi:10.1111/jhn.12456 | es_ES |
dc.description.references | Jin, T., & Zhang, H. (2008). Biodegradable Polylactic Acid Polymer with Nisin for Use in Antimicrobial Food Packaging. Journal of Food Science, 73(3), M127-M134. doi:10.1111/j.1750-3841.2008.00681.x | es_ES |
dc.description.references | Castro López, M. del M., Dopico García, S., Ares Pernas, A., López Vilariño, J. M., & González Rodríguez, M. V. (2012). Effect of PPG-PEG-PPG on the Tocopherol-Controlled Release from Films Intended for Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 60(33), 8163-8170. doi:10.1021/jf301442p | es_ES |
dc.description.references | Arrieta, M. P., Fortunati, E., Dominici, F., López, J., & Kenny, J. M. (2015). Bionanocomposite films based on plasticized PLA–PHB/cellulose nanocrystal blends. Carbohydrate Polymers, 121, 265-275. doi:10.1016/j.carbpol.2014.12.056 | es_ES |
dc.description.references | Souza, V. G. L., & Fernando, A. L. (2016). Nanoparticles in food packaging: Biodegradability and potential migration to food—A review. Food Packaging and Shelf Life, 8, 63-70. doi:10.1016/j.fpsl.2016.04.001 | es_ES |
dc.description.references | Lagaron, J. M., & Lopez-Rubio, A. (2011). Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends in Food Science & Technology, 22(11), 611-617. doi:10.1016/j.tifs.2011.01.007 | es_ES |
dc.description.references | Briassoulis, D., & Dejean, C. (2010). Critical Review of Norms and Standards for Biodegradable Agricultural Plastics Part Ι. Biodegradation in Soil. Journal of Polymers and the Environment, 18(3), 384-400. doi:10.1007/s10924-010-0168-1 | es_ES |
dc.description.references | Avérous, L. (2004). Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews, 44(3), 231-274. doi:10.1081/mc-200029326 | es_ES |
dc.description.references | Auras, R., Harte, B., & Selke, S. (2004). An Overview of Polylactides as Packaging Materials. Macromolecular Bioscience, 4(9), 835-864. doi:10.1002/mabi.200400043 | es_ES |
dc.description.references | Kale, G., Kijchavengkul, T., Auras, R., Rubino, M., Selke, S. E., & Singh, S. P. (2007). Compostability of Bioplastic Packaging Materials: An Overview. Macromolecular Bioscience, 7(3), 255-277. doi:10.1002/mabi.200600168 | es_ES |
dc.description.references | Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940 | es_ES |
dc.description.references | Bor, Y., Alin, J., & Hakkarainen, M. (2012). Electrospray Ionization-Mass Spectrometry Analysis Reveals Migration of Cyclic Lactide Oligomers from Polylactide Packaging in Contact with Ethanolic Food Simulant. Packaging Technology and Science, 25(7), 427-433. doi:10.1002/pts.990 | es_ES |
dc.description.references | Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-571. doi:10.1111/j.1541-4337.2010.00126.x | es_ES |
dc.description.references | Carrasco, F., Cailloux, J., Sánchez-Jiménez, P. E., & Maspoch, M. L. (2014). Improvement of the thermal stability of branched poly(lactic acid) obtained by reactive extrusion. Polymer Degradation and Stability, 104, 40-49. doi:10.1016/j.polymdegradstab.2014.03.026 | es_ES |
dc.description.references | Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17-46. doi:10.1016/j.addr.2016.04.003 | es_ES |
dc.description.references | Arrieta, M. P., & Peponi, L. (2017). Polyurethane based on PLA and PCL incorporated with catechin: Structural, thermal and mechanical characterization. European Polymer Journal, 89, 174-184. doi:10.1016/j.eurpolymj.2017.02.028 | es_ES |
dc.description.references | Yuan, M. W., Qin, Y. Y., Yang, J. Y., Wu, Y., Yuan, M. L., & Li, H. L. (2013). Preparation and Characterization of Poly(L-Lactide-Co-ε-Caprolactone) Copolymer for Food Packaging Application. Advanced Materials Research, 779-780, 231-234. doi:10.4028/www.scientific.net/amr.779-780.231 | es_ES |
dc.description.references | Arrieta, M. P., Samper, M. D., López, J., & Jiménez, A. (2014). Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. Journal of Polymers and the Environment, 22(4), 460-470. doi:10.1007/s10924-014-0654-y | es_ES |
dc.description.references | Cruz-Romero, M. (2008). Crop-based biodegradable packaging and its environmental implications. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 3(074). doi:10.1079/pavsnnr20083074 | es_ES |
dc.description.references | Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O., & Balart, R. (2016). The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydrate Polymers, 147, 60-68. doi:10.1016/j.carbpol.2016.03.082 | es_ES |
dc.description.references | Luzi, F., Fortunati, E., Jiménez, A., Puglia, D., Pezzolla, D., Gigliotti, G., … Torre, L. (2016). Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Industrial Crops and Products, 93, 276-289. doi:10.1016/j.indcrop.2016.01.045 | es_ES |
dc.description.references | González-Ausejo, J., Sánchez-Safont, E., Lagarón, J. M., Balart, R., Cabedo, L., & Gámez-Pérez, J. (2017). Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-poly(lactic acid) blends with diisocyanates. Journal of Applied Polymer Science, 134(20). doi:10.1002/app.44806 | es_ES |
dc.description.references | Arrieta, M. P., Fortunati, E., Dominici, F., Rayón, E., López, J., & Kenny, J. M. (2014). PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polymer Degradation and Stability, 107, 139-149. doi:10.1016/j.polymdegradstab.2014.05.010 | es_ES |
dc.description.references | Ljungberg, N., & Wesslén, B. (2005). Preparation and Properties of Plasticized Poly(lactic acid) Films. Biomacromolecules, 6(3), 1789-1796. doi:10.1021/bm050098f | es_ES |
dc.description.references | Ferri, J. M., Fenollar, O., Jorda-Vilaplana, A., García-Sanoguera, D., & Balart, R. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polymer International, 65(4), 453-463. doi:10.1002/pi.5079 | es_ES |
dc.description.references | Garcia-Garcia, D., Ferri, J. M., Boronat, T., Lopez-Martinez, J., & Balart, R. (2016). Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties. Polymer Bulletin, 73(12), 3333-3350. doi:10.1007/s00289-016-1659-6 | es_ES |
dc.description.references | Khosravi-Darani, K. (2015). Application of Poly(hydroxyalkanoate) In Food Packaging: Improvements by Nanotechnology. Chemical and Biochemical Engineering Quarterly, 29(2), 275-285. doi:10.15255/cabeq.2014.2260 | es_ES |
dc.description.references | Sánchez-Safont, E. L., González-Ausejo, J., Gámez-Pérez, J., Lagarón, J. M., & Cabedo, L. (2016). Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Purified Cellulose Fiber Composites by Melt Blending: Characterization and Degradation in Composting Conditions. Journal of Renewable Materials, 4(2), 123-132. doi:10.7569/jrm.2015.634127 | es_ES |
dc.description.references | González-Ausejo, J., Sanchez-Safont, E., Lagaron, J. M., Olsson, R. T., Gamez-Perez, J., & Cabedo, L. (2017). Assessing the thermoformability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(acid lactic) blends compatibilized with diisocyanates. Polymer Testing, 62, 235-245. doi:10.1016/j.polymertesting.2017.06.026 | es_ES |
dc.description.references | Bucci, D. Z., Tavares, L. B. B., & Sell, I. (2005). PHB packaging for the storage of food products. Polymer Testing, 24(5), 564-571. doi:10.1016/j.polymertesting.2005.02.008 | es_ES |
dc.description.references | Lenz, R. W., & Marchessault, R. H. (2005). Bacterial Polyesters: Biosynthesis, Biodegradable Plastics and Biotechnology. Biomacromolecules, 6(1), 1-8. doi:10.1021/bm049700c | es_ES |
dc.description.references | Moire, L., Rezzonico, E., & Poirier, Y. (2003). Synthesis of novel biomaterials in plants. Journal of Plant Physiology, 160(7), 831-839. doi:10.1078/0176-1617-01030 | es_ES |
dc.description.references | Gracida, J., Alba, J., Cardoso, J., & Perez-Guevara, F. (2004). Studies of biodegradation of binary blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) with poly(2-hydroxyethylmetacrilate) (PHEMA). Polymer Degradation and Stability, 83(2), 247-253. doi:10.1016/s0141-3910(03)00269-6 | es_ES |
dc.description.references | Zhang, M., & Thomas, N. L. (2011). Blending polylactic acid with polyhydroxybutyrate: The effect on thermal, mechanical, and biodegradation properties. Advances in Polymer Technology, 30(2), 67-79. doi:10.1002/adv.20235 | es_ES |
dc.description.references | Garcia-Garcia, D., Rayón, E., Carbonell-Verdu, A., Lopez-Martinez, J., & Balart, R. (2017). Improvement of the compatibility between poly(3-hydroxybutyrate) and poly(ε-caprolactone) by reactive extrusion with dicumyl peroxide. European Polymer Journal, 86, 41-57. doi:10.1016/j.eurpolymj.2016.11.018 | es_ES |
dc.description.references | Bucci, D. Z., Tavares, L. B. B., & Sell, I. (2007). Biodegradation and physical evaluation of PHB packaging. Polymer Testing, 26(7), 908-915. doi:10.1016/j.polymertesting.2007.06.013 | es_ES |
dc.description.references | Arrieta, M. P., Fortunati, E., Dominici, F., Rayón, E., López, J., & Kenny, J. M. (2014). Multifunctional PLA–PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohydrate Polymers, 107, 16-24. doi:10.1016/j.carbpol.2014.02.044 | es_ES |
dc.description.references | S. de O. Patrício, P., Pereira, F. V., dos Santos, M. C., de Souza, P. P., Roa, J. P. B., & Orefice, R. L. (2012). Increasing the elongation at break of polyhydroxybutyrate biopolymer: Effect of cellulose nanowhiskers on mechanical and thermal properties. Journal of Applied Polymer Science, 127(5), 3613-3621. doi:10.1002/app.37811 | es_ES |
dc.description.references | European Bioplasticshttp://www.european-bioplastics.org/market/ | es_ES |
dc.description.references | Hu, Y., Sato, H., Zhang, J., Noda, I., & Ozaki, Y. (2008). Crystallization behavior of poly(l-lactic acid) affected by the addition of a small amount of poly(3-hydroxybutyrate). Polymer, 49(19), 4204-4210. doi:10.1016/j.polymer.2008.07.031 | es_ES |
dc.description.references | Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2015). Development of flexible materials based on plasticized electrospun PLA–PHB blends: Structural, thermal, mechanical and disintegration properties. European Polymer Journal, 73, 433-446. doi:10.1016/j.eurpolymj.2015.10.036 | es_ES |
dc.description.references | Calvão, P. S., Chenal, J.-M., Gauthier, C., Demarquette, N. R., Bogner, A., & Cavaille, J. Y. (2011). Understanding the mechanical and biodegradation behaviour of poly(hydroxybutyrate)/rubber blends in relation to their morphology. Polymer International, 61(3), 434-441. doi:10.1002/pi.3211 | es_ES |
dc.description.references | Blümm, E., & Owen, A. J. (1995). Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/ poly(l-lactide) blends. Polymer, 36(21), 4077-4081. doi:10.1016/0032-3861(95)90987-d | es_ES |
dc.description.references | Chang, L., & Woo, E. M. (2012). Crystallization of poly(3-hydroxybutyrate) with stereocomplexed polylactide as biodegradable nucleation agent. Polymer Engineering & Science, 52(7), 1413-1419. doi:10.1002/pen.23081 | es_ES |
dc.description.references | Ni, C., Luo, R., Xu, K., & Chen, G.-Q. (2009). Thermal and crystallinity property studies of poly (L-lactic acid) blended with oligomers of 3-hydroxybutyrate or dendrimers of hydroxyalkanoic acids. Journal of Applied Polymer Science, 111(4), 1720-1727. doi:10.1002/app.29182 | es_ES |
dc.description.references | Vogel, C., & Siesler, H. W. (2008). Thermal Degradation of Poly(ɛ-caprolactone), Poly(L-lactic acid) and their Blends with Poly(3-hydroxy-butyrate) Studied by TGA/FT-IR Spectroscopy. Macromolecular Symposia, 265(1), 183-194. doi:10.1002/masy.200850520 | es_ES |
dc.description.references | Arrieta, M. P., López, J., Hernández, A., & Rayón, E. (2014). Ternary PLA–PHB–Limonene blends intended for biodegradable food packaging applications. European Polymer Journal, 50, 255-270. doi:10.1016/j.eurpolymj.2013.11.009 | es_ES |
dc.description.references | Ohkoshi, I., Abe, H., & Doi, Y. (2000). Miscibility and solid-state structures for blends of poly[(S)-lactide] with atactic poly[(R,S)-3-hydroxybutyrate]. Polymer, 41(15), 5985-5992. doi:10.1016/s0032-3861(99)00781-8 | es_ES |
dc.description.references | Tri, P. N., Domenek, S., Guinault, A., & Sollogoub, C. (2013). Crystallization behavior of poly(lactide)/poly(β-hydroxybutyrate)/talc composites. Journal of Applied Polymer Science, 129(6), 3355-3365. doi:10.1002/app.39056 | es_ES |
dc.description.references | Zhang, L., Xiong, C., & Deng, X. (1996). Miscibility, crystallization and morphology of poly(β-hydroxybutyrate)/poly(d,l-lactide) blends. Polymer, 37(2), 235-241. doi:10.1016/0032-3861(96)81093-7 | es_ES |
dc.description.references | Musioł, M., Sikorska, W., Adamus, G., Janeczek, H., Kowalczuk, M., & Rydz, J. (2015). (Bio)degradable polymers as a potential material for food packaging: studies on the (bio)degradation process of PLA/(R,S)-PHB rigid foils under industrial composting conditions. European Food Research and Technology, 242(6), 815-823. doi:10.1007/s00217-015-2611-y | es_ES |
dc.description.references | Bartczak, Z., Galeski, A., Kowalczuk, M., Sobota, M., & Malinowski, R. (2013). Tough blends of poly(lactide) and amorphous poly([R,S]-3-hydroxy butyrate) – morphology and properties. European Polymer Journal, 49(11), 3630-3641. doi:10.1016/j.eurpolymj.2013.07.033 | es_ES |
dc.description.references | Lim, L.-T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820-852. doi:10.1016/j.progpolymsci.2008.05.004 | es_ES |
dc.description.references | Drumright, R. E., Gruber, P. R., & Henton, D. E. (2000). Polylactic Acid Technology. Advanced Materials, 12(23), 1841-1846. doi:10.1002/1521-4095(200012)12:23<1841::aid-adma1841>3.0.co;2-e | es_ES |
dc.description.references | Jandas, P. J., Mohanty, S., & Nayak, S. K. (2013). Morphology and Thermal Properties of Renewable Resource-Based Polymer Blend Nanocomposites Influenced by a Reactive Compatibilizer. ACS Sustainable Chemistry & Engineering, 2(3), 377-386. doi:10.1021/sc400395s | es_ES |
dc.description.references | Dong, W., Ma, P., Wang, S., Chen, M., Cai, X., & Zhang, Y. (2013). Effect of partial crosslinking on morphology and properties of the poly(β-hydroxybutyrate)/poly(d,l-lactic acid) blends. Polymer Degradation and Stability, 98(9), 1549-1555. doi:10.1016/j.polymdegradstab.2013.06.033 | es_ES |
dc.description.references | Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2016). Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products, 93, 290-301. doi:10.1016/j.indcrop.2015.12.058 | es_ES |
dc.description.references | Arrieta, M. P., López, J., López, D., Kenny, J. M., & Peponi, L. (2016). Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites. Polymer Degradation and Stability, 132, 145-156. doi:10.1016/j.polymdegradstab.2016.02.027 | es_ES |
dc.description.references | Toncheva, A., Spasova, M., Paneva, D., Manolova, N., & Rashkov, I. (2014). Polylactide (PLA)-Based Electrospun Fibrous Materials Containing Ionic Drugs as Wound Dressing Materials: A Review. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(13), 657-671. doi:10.1080/00914037.2013.854240 | es_ES |
dc.description.references | Abdelwahab, M. A., Flynn, A., Chiou, B.-S., Imam, S., Orts, W., & Chiellini, E. (2012). Thermal, mechanical and morphological characterization of plasticized PLA–PHB blends. Polymer Degradation and Stability, 97(9), 1822-1828. doi:10.1016/j.polymdegradstab.2012.05.036 | es_ES |
dc.description.references | Burgos, N., Armentano, I., Fortunati, E., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2017). Functional Properties of Plasticized Bio-Based Poly(Lactic Acid)_Poly(Hydroxybutyrate) (PLA_PHB) Films for Active Food Packaging. Food and Bioprocess Technology, 10(4), 770-780. doi:10.1007/s11947-016-1846-3 | es_ES |
dc.description.references | Kiziltas, A., Nazari, B., Erbas Kiziltas, E., Gardner, D. J., Han, Y., & Rushing, T. S. (2016). Method to reinforce polylactic acid with cellulose nanofibers via a polyhydroxybutyrate carrier system. Carbohydrate Polymers, 140, 393-399. doi:10.1016/j.carbpol.2015.12.059 | es_ES |
dc.description.references | Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Bio-based PLA_PHB plasticized blend films: Processing and structural characterization. LWT - Food Science and Technology, 64(2), 980-988. doi:10.1016/j.lwt.2015.06.032 | es_ES |
dc.description.references | Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Processing and characterization of plasticized PLA/PHB blends for biodegradable multiphase systems. Express Polymer Letters, 9(7), 583-596. doi:10.3144/expresspolymlett.2015.55 | es_ES |
dc.description.references | Murariu, M., Da Silva Ferreira, A., Alexandre, M., & Dubois, P. (2008). Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polymers for Advanced Technologies, 19(6), 636-646. doi:10.1002/pat.1131 | es_ES |
dc.description.references | Martin, O., & Avérous, L. (2001). Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 42(14), 6209-6219. doi:10.1016/s0032-3861(01)00086-6 | es_ES |
dc.description.references | Burgos, N., Tolaguera, D., Fiori, S., & Jiménez, A. (2013). Synthesis and Characterization of Lactic Acid Oligomers: Evaluation of Performance as Poly(Lactic Acid) Plasticizers. Journal of Polymers and the Environment, 22(2), 227-235. doi:10.1007/s10924-013-0628-5 | es_ES |
dc.description.references | Martino, V. P., Jiménez, A., Ruseckaite, R. A., & Avérous, L. (2010). Structure and properties of clay nano-biocomposites based on poly(lactic acid) plasticized with polyadipates. Polymers for Advanced Technologies, 22(12), 2206-2213. doi:10.1002/pat.1747 | es_ES |
dc.description.references | Courgneau, C., Domenek, S., Guinault, A., Avérous, L., & Ducruet, V. (2011). Analysis of the Structure-Properties Relationships of Different Multiphase Systems Based on Plasticized Poly(Lactic Acid). Journal of Polymers and the Environment, 19(2), 362-371. doi:10.1007/s10924-011-0285-5 | es_ES |
dc.description.references | Maiza, M., Benaniba, M. T., Quintard, G., & Massardier-Nageotte, V. (2015). Biobased additive plasticizing Polylactic acid (PLA). Polímeros, 25(6), 581-590. doi:10.1590/0104-1428.1986 | es_ES |
dc.description.references | Coltelli, M.-B., Maggiore, I. D., Bertoldo, M., Signori, F., Bronco, S., & Ciardelli, F. (2008). Poly(lactic acid) properties as a consequence of poly(butylene adipate-co-terephthalate) blending and acetyl tributyl citrate plasticization. Journal of Applied Polymer Science, 110(2), 1250-1262. doi:10.1002/app.28512 | es_ES |
dc.description.references | Arrieta, M. P., López, J., Ferrándiz, S., & Peltzer, M. A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polymer Testing, 32(4), 760-768. doi:10.1016/j.polymertesting.2013.03.016 | es_ES |
dc.description.references | Fortunati, E., Luzi, F., Puglia, D., Dominici, F., Santulli, C., Kenny, J. M., & Torre, L. (2014). Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. European Polymer Journal, 56, 77-91. doi:10.1016/j.eurpolymj.2014.03.030 | es_ES |
dc.description.references | Marina P. Arrieta, Juan López, Santiago Ferrándiz, & Mercedes A. Peltzer. (2015). EFFECT OF D-LIMONENE ON THE STABILIZATION OF POLY (LACTIC ACID). Acta Horticulturae, (1065), 719-725. doi:10.17660/actahortic.2015.1065.90 | es_ES |
dc.description.references | Torres, A., Ilabaca, E., Rojas, A., Rodríguez, F., Galotto, M. J., Guarda, A., … Romero, J. (2017). Effect of processing conditions on the physical, chemical and transport properties of polylactic acid films containing thymol incorporated by supercritical impregnation. European Polymer Journal, 89, 195-210. doi:10.1016/j.eurpolymj.2017.01.019 | es_ES |
dc.description.references | Ramos, M., Jiménez, A., Peltzer, M., & Garrigós, M. C. (2014). Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chemistry, 162, 149-155. doi:10.1016/j.foodchem.2014.04.026 | es_ES |
dc.description.references | Salazar, R., Domenek, S., Courgneau, C., & Ducruet, V. (2012). Plasticization of poly(lactide) by sorption of volatile organic compounds at low concentration. Polymer Degradation and Stability, 97(10), 1871-1880. doi:10.1016/j.polymdegradstab.2012.03.047 | es_ES |
dc.description.references | Grillo Fernandes, E., Pietrini, M., & Chiellini, E. (2001). Thermo-Mechanical and Morphological Characterization of Plasticized Poly[(R)-3-hydroxybutyric acid]. Macromolecular Symposia, 169(1), 157-164. doi:10.1002/masy.200451416 | es_ES |
dc.description.references | Janigová, I., Lacı́k, I., & Chodák, I. (2002). Thermal degradation of plasticized poly(3-hydroxybutyrate) investigated by DSC. Polymer Degradation and Stability, 77(1), 35-41. doi:10.1016/s0141-3910(02)00077-0 | es_ES |
dc.description.references | Erceg, M., Kovačić, T., & Klarić, I. (2005). Thermal degradation of poly(3-hydroxybutyrate) plasticized with acetyl tributyl citrate. Polymer Degradation and Stability, 90(2), 313-318. doi:10.1016/j.polymdegradstab.2005.04.048 | es_ES |
dc.description.references | Wang, L., Zhu, W., Wang, X., Chen, X., Chen, G.-Q., & Xu, K. (2007). Processability modifications of poly(3-hydroxybutyrate) by plasticizing, blending, and stabilizing. Journal of Applied Polymer Science, 107(1), 166-173. doi:10.1002/app.27004 | es_ES |
dc.description.references | Fenollar, O., Garcia-Sanoguera, D., Sanchez-Nacher, L., Boronat, T., López, J., & Balart, R. (2013). Mechanical and Thermal Properties of Polyvinyl Chloride Plasticized with Natural Fatty Acid Esters. Polymer-Plastics Technology and Engineering, 52(8), 761-767. doi:10.1080/03602559.2013.763352 | es_ES |
dc.description.references | Arrieta, M. P., Samper, M. D., Jiménez-López, M., Aldas, M., & López, J. (2017). Combined effect of linseed oil and gum rosin as natural additives for PVC. Industrial Crops and Products, 99, 196-204. doi:10.1016/j.indcrop.2017.02.009 | es_ES |
dc.description.references | Arrieta, M. P., López, J., Rayón, E., & Jiménez, A. (2014). Disintegrability under composting conditions of plasticized PLA–PHB blends. Polymer Degradation and Stability, 108, 307-318. doi:10.1016/j.polymdegradstab.2014.01.034 | es_ES |
dc.description.references | Arrieta, M. P., Castro-López, M. del M., Rayón, E., Barral-Losada, L. F., López-Vilariño, J. M., López, J., & González-Rodríguez, M. V. (2014). Plasticized Poly(lactic acid)–Poly(hydroxybutyrate) (PLA–PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 62(41), 10170-10180. doi:10.1021/jf5029812 | es_ES |
dc.description.references | Burgos, N., Martino, V. P., & Jiménez, A. (2013). Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 98(2), 651-658. doi:10.1016/j.polymdegradstab.2012.11.009 | es_ES |
dc.description.references | Zhu, P., Chen, Y., Fang, J., Wang, Z., Xie, C., Hou, B., … Xu, F. (2016). Solubility and solution thermodynamics of thymol in six pure organic solvents. The Journal of Chemical Thermodynamics, 92, 198-206. doi:10.1016/j.jct.2015.09.010 | es_ES |
dc.description.references | Cailloux, J., Hakim, R. N., Santana, O. O., Bou, J., Abt, T., Sánchez-Soto, M., … Maspoch, M. L. (2016). Reactive extrusion: A useful process to manufacture structurally modified PLA/o-MMT composites. Composites Part A: Applied Science and Manufacturing, 88, 106-115. doi:10.1016/j.compositesa.2016.05.024 | es_ES |
dc.description.references | Fortunati, E., Yang, W., Luzi, F., Kenny, J., Torre, L., & Puglia, D. (2016). Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: an overview. European Polymer Journal, 80, 295-316. doi:10.1016/j.eurpolymj.2016.04.013 | es_ES |
dc.description.references | Garcia-Garcia, D., Ferri, J. M., Montanes, N., Lopez-Martinez, J., & Balart, R. (2016). Plasticization effects of epoxidized vegetable oils on mechanical properties of poly(3-hydroxybutyrate). Polymer International, 65(10), 1157-1164. doi:10.1002/pi.5164 | es_ES |
dc.description.references | Panaitescu, D. M., Nicolae, C. A., Frone, A. N., Chiulan, I., Stanescu, P. O., Draghici, C., … Mihailescu, M. (2017). Plasticized poly(3-hydroxybutyrate) with improved melt processing and balanced properties. Journal of Applied Polymer Science, 134(19). doi:10.1002/app.44810 | es_ES |
dc.description.references | Kopinke, F.-D., Remmler, M., Mackenzie, K., Möder, M., & Wachsen, O. (1996). Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid). Polymer Degradation and Stability, 53(3), 329-342. doi:10.1016/0141-3910(96)00102-4 | es_ES |
dc.description.references | Aoyagi, Y., Yamashita, K., & Doi, Y. (2002). Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide]. Polymer Degradation and Stability, 76(1), 53-59. doi:10.1016/s0141-3910(01)00265-8 | es_ES |
dc.description.references | Kawalec, M., Adamus, G., Kurcok, P., Kowalczuk, M., Foltran, I., Focarete, M. L., & Scandola, M. (2007). Carboxylate-Induced Degradation of Poly(3-hydroxybutyrate)s. Biomacromolecules, 8(4), 1053-1058. doi:10.1021/bm061155n | es_ES |
dc.description.references | Lai, S.-M., Liu, Y.-H., Huang, C.-T., & Don, T.-M. (2017). Miscibility and toughness improvement of poly(lactic acid)/poly(3-Hydroxybutyrate) blends using a melt-induced degradation approach. Journal of Polymer Research, 24(7). doi:10.1007/s10965-017-1253-0 | es_ES |
dc.description.references | Zhang, J., Tashiro, K., Tsuji, H., & Domb, A. J. (2008). Disorder-to-Order Phase Transition and Multiple Melting Behavior of Poly(l-lactide) Investigated by Simultaneous Measurements of WAXD and DSC. Macromolecules, 41(4), 1352-1357. doi:10.1021/ma0706071 | es_ES |
dc.description.references | D’Amico, D. A., Iglesias Montes, M. L., Manfredi, L. B., & Cyras, V. P. (2016). Fully bio-based and biodegradable polylactic acid/poly(3-hydroxybutirate) blends: Use of a common plasticizer as performance improvement strategy. Polymer Testing, 49, 22-28. doi:10.1016/j.polymertesting.2015.11.004 | es_ES |
dc.description.references | Pachekoski, W. M., Dalmolin, C., & Agnelli, J. A. M. (2014). Blendas poliméricas biodegradáveis de PHB e PLA para fabricação de filmes. Polímeros, 24(4), 501-507. doi:10.1590/0104-1428.1489 | es_ES |
dc.description.references | Dopico-García, M. S., Ares-Pernas, A., González-Rodríguez, M. V., López-Vilariño, J. M., & Abad-López, M. J. (2012). Commercial biodegradable material for food contact: methodology for assessment of service life. Polymer International, 61(11), 1648-1654. doi:10.1002/pi.4255 | es_ES |
dc.description.references | Datta, R., Tsai, S.-P., Bonsignore, P., Moon, S.-H., & Frank, J. R. (1995). Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiology Reviews, 16(2-3), 221-231. doi:10.1111/j.1574-6976.1995.tb00168.x | es_ES |
dc.description.references | Haugaard, V. K., Danielsen, B., & Bertelsen, G. (2003). Impact of polylactate and poly(hydroxybutyrate) on food quality. European Food Research and Technology, 216(3), 233-240. doi:10.1007/s00217-002-0651-6 | es_ES |
dc.description.references | Vogler, E. A. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 74(1-3), 69-117. doi:10.1016/s0001-8686(97)00040-7 | es_ES |
dc.description.references | Jordá-Vilaplana, A., Fombuena, V., García-García, D., Samper, M. D., & Sánchez-Nácher, L. (2014). Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment. European Polymer Journal, 58, 23-33. doi:10.1016/j.eurpolymj.2014.06.002 | es_ES |
dc.description.references | Puglia, D., Fortunati, E., D’Amico, D. A., Manfredi, L. B., Cyras, V. P., & Kenny, J. M. (2014). Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films. Polymer Degradation and Stability, 99, 127-135. doi:10.1016/j.polymdegradstab.2013.11.013 | es_ES |
dc.description.references | Fombuena, V., García-Sanoguera, D., Sánchez-Nácher, L., Balart, R., & Boronat, T. (2013). Optimization of atmospheric plasma treatment of LDPE films: influence on adhesive properties and ageing behavior. Journal of Adhesion Science and Technology, 28(1), 97-113. doi:10.1080/01694243.2013.847045 | es_ES |
dc.description.references | Balart, J., Fombuena, V., Boronat, T., Reig, M. J., & Balart, R. (2011). Surface modification of polypropylene substrates by UV photografting of methyl methacrylate (MMA) for improved surface wettability. Journal of Materials Science, 47(5), 2375-2383. doi:10.1007/s10853-011-6056-9 | es_ES |
dc.description.references | Ada˜o, M. H., Fernandes, A. C., Saramago, B., & Cazabat, A. M. (1998). Influence of preparation method on the surface topography and wetting properties of polystyrene films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 132(2-3), 181-192. doi:10.1016/s0927-7757(97)00095-2 | es_ES |
dc.description.references | Siracusa, V., Ingrao, C., Karpova, S. G., Olkhov, A. A., & Iordanskii, A. L. (2017). Gas transport and characterization of poly(3 hydroxybutyrate) films. European Polymer Journal, 91, 149-161. doi:10.1016/j.eurpolymj.2017.03.047 | es_ES |
dc.description.references | Siracusa, V., Rocculi, P., Romani, S., & Rosa, M. D. (2008). Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology, 19(12), 634-643. doi:10.1016/j.tifs.2008.07.003 | es_ES |
dc.description.references | Fabra, M. J., Lopez-Rubio, A., & Lagaron, J. M. (2014). Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. Journal of Food Engineering, 127, 1-9. doi:10.1016/j.jfoodeng.2013.11.022 | es_ES |
dc.description.references | Fortunati, E., Peltzer, M., Armentano, I., Torre, L., Jiménez, A., & Kenny, J. M. (2012). Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydrate Polymers, 90(2), 948-956. doi:10.1016/j.carbpol.2012.06.025 | es_ES |
dc.description.references | Díez-Pascual, A., & Díez-Vicente, A. (2014). Poly(3-hydroxybutyrate)/ZnO Bionanocomposites with Improved Mechanical, Barrier and Antibacterial Properties. International Journal of Molecular Sciences, 15(6), 10950-10973. doi:10.3390/ijms150610950 | es_ES |
dc.description.references | Reddy, M. M., Vivekanandhan, S., Misra, M., Bhatia, S. K., & Mohanty, A. K. (2013). Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, 38(10-11), 1653-1689. doi:10.1016/j.progpolymsci.2013.05.006 | es_ES |
dc.description.references | Michaels, A. S., & Bixler, H. J. (1961). Solubility of gases in polyethylene. Journal of Polymer Science, 50(154), 393-412. doi:10.1002/pol.1961.1205015411 | es_ES |
dc.description.references | Arrieta, M. P., Peltzer, M. A., López, J., Garrigós, M. del C., Valente, A. J. M., & Jiménez, A. (2014). Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. Journal of Food Engineering, 121, 94-101. doi:10.1016/j.jfoodeng.2013.08.015 | es_ES |
dc.description.references | Abarca, R. L., Rodríguez, F. J., Guarda, A., Galotto, M. J., Bruna, J. E., Fávaro Perez, M. A., … Padula, M. (2017). Application of β-Cyclodextrin/2-Nonanone Inclusion Complex as Active Agent to Design of Antimicrobial Packaging Films for Control of Botrytis cinerea. Food and Bioprocess Technology, 10(9), 1585-1594. doi:10.1007/s11947-017-1926-z | es_ES |
dc.description.references | Gómez-Estaca, J., López-de-Dicastillo, C., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Advances in antioxidant active food packaging. Trends in Food Science & Technology, 35(1), 42-51. doi:10.1016/j.tifs.2013.10.008 | es_ES |
dc.description.references | Peltzer, M., Wagner, J., & Jiménez, A. (2009). Migration study of carvacrol as a natural antioxidant in high-density polyethylene for active packaging. Food Additives & Contaminants: Part A, 26(6), 938-946. doi:10.1080/02652030802712681 | es_ES |
dc.description.references | De Dicastillo, C., Navarro, R., Guarda, A., & Galotto, M. (2015). Development of Biocomposites with Antioxidant Activity Based on Red Onion Extract and Acetate Cellulose. Antioxidants, 4(3), 533-547. doi:10.3390/antiox4030533 | es_ES |
dc.description.references | Prior, R. L., Wu, X., & Schaich, K. (2005). Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. doi:10.1021/jf0502698 | es_ES |
dc.description.references | Muñoz-Bonilla, A., & Fernández-García, M. (2015). The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. European Polymer Journal, 65, 46-62. doi:10.1016/j.eurpolymj.2015.01.030 | es_ES |
dc.description.references | Requena, R., Vargas, M., & Chiralt, A. (2017). Release kinetics of carvacrol and eugenol from poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) films for food packaging applications. European Polymer Journal, 92, 185-193. doi:10.1016/j.eurpolymj.2017.05.008 | es_ES |
dc.description.references | Chien, Y.-C., Liang, C., & Yang, S. (2011). Exploratory study on the pyrolysis and PAH emissions of polylactic acid. Atmospheric Environment, 45(1), 123-127. doi:10.1016/j.atmosenv.2010.09.035 | es_ES |
dc.description.references | Yagi, H., Ninomiya, F., Funabashi, M., & Kunioka, M. (2013). Thermophilic anaerobic biodegradation test and analysis of eubacteria involved in anaerobic biodegradation of four specified biodegradable polyesters. Polymer Degradation and Stability, 98(6), 1182-1187. doi:10.1016/j.polymdegradstab.2013.03.010 | es_ES |
dc.description.references | Kale, G., Auras, R., & Singh, S. P. (2006). Degradation of Commercial Biodegradable Packages under Real Composting and Ambient Exposure Conditions. Journal of Polymers and the Environment, 14(3), 317-334. doi:10.1007/s10924-006-0015-6 | es_ES |
dc.description.references | Musioł, M., Sikorska, W., Adamus, G., Janeczek, H., Richert, J., Malinowski, R., … Kowalczuk, M. (2016). Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions. Waste Management, 52, 69-76. doi:10.1016/j.wasman.2016.04.016 | es_ES |