- -

Lateral flow immunoassay for on-site detection of Xanthomonas arboricola pv. Pruni in symptomatic field samples

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Lateral flow immunoassay for on-site detection of Xanthomonas arboricola pv. Pruni in symptomatic field samples

Mostrar el registro completo del ítem

López-Soriano, P.; Noguera Murray, PS.; Gorris, MT.; Puchades, R.; Maquieira Catala, A.; Marco-Noales, E.; López, M. (2017). Lateral flow immunoassay for on-site detection of Xanthomonas arboricola pv. Pruni in symptomatic field samples. PLoS ONE. 12(4):1-13. https://doi.org/10.1371/journal.pone.0176201

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148892

Ficheros en el ítem

Metadatos del ítem

Título: Lateral flow immunoassay for on-site detection of Xanthomonas arboricola pv. Pruni in symptomatic field samples
Autor: López-Soriano, P. Noguera Murray, Patricia Silvestre Gorris, María Teresa Puchades, Rosa Maquieira Catala, Angel Marco-Noales, E. López, M.M.
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] Xanthomonas arboricola pv. pruni is a quarantine pathogen and the causal agent of the bacterial spot disease of stone fruits and almond, a major threat to Prunus species. Rapid and specific detection methods are ...[+]
Palabras clave: PCR protocol , Identification , Device
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS ONE. (issn: 1932-6203 )
DOI: 10.1371/journal.pone.0176201
Editorial:
Public Library of Science
Versión del editor: https://doi.org/10.1371/journal.pone.0176201
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTQ2013-45875-R/ES/BIOSENSADO EN SOPORTES INTERACTIVOS CON PROPIEDADES INTERFEROMETRICAS PARA APLICACIONES CLINICAS. DEMOSTRACION EN FARMACOGENETICA Y ALERGIAS MEDICAMENTOSAS/
info:eu-repo/grantAgreement/MICINN//RTA2011-00140-C03-01/ES/Bases biológicas para la prevención de la enfermedad causada por Xanthomonas arboricola pv. pruni, patógeno de cuarentena de los frutales del género Prunas/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F040/ES/Estudio de estrategias fisico-químicas para el desarrollo de biosensores interferométricos en soportes interactivos de aplicación en clínica/
Agradecimientos:
The work was supported by the following: Instituto Nacional de Tecnologia Agraria y Alimentaria, Project RTA-2011-00140-C03-01 (http://www.inia.es), PLS MTG EMN MML; Instituto Nacional de Tecnologia Agraria y Alimentaria, ...[+]
Tipo: Artículo

References

Tjou-Tam-Sin, N. N. A., van de Bilt, J. L. J., Bergsma-Vlami, M., Koenraadt, H., Naktuinbouw, J. W., van Doorn, J., … Martin, W. S. (2012). First Report of Xanthomonas arboricola pv. pruni in Ornamental Prunus laurocerasus in the Netherlands. Plant Disease, 96(5), 759-759. doi:10.1094/pdis-04-11-0265-pdn

Pothier, J. F., Vorhölter, F.-J., Blom, J., Goesmann, A., Pühler, A., Smits, T. H. M., & Duffy, B. (2011). The ubiquitous plasmid pXap41 in the invasive phytopathogen Xanthomonas arboricola pv. pruni: complete sequence and comparative genomic analysis. FEMS Microbiology Letters, 323(1), 52-60. doi:10.1111/j.1574-6968.2011.02352.x

Palacio-Bielsa, A., Cubero, J., Cambra, M. A., Collados, R., Berruete, I. M., & López, M. M. (2010). Development of an Efficient Real-Time Quantitative PCR Protocol for Detection ofXanthomonas arboricolapv. pruni inPrunusSpecies. Applied and Environmental Microbiology, 77(1), 89-97. doi:10.1128/aem.01593-10 [+]
Tjou-Tam-Sin, N. N. A., van de Bilt, J. L. J., Bergsma-Vlami, M., Koenraadt, H., Naktuinbouw, J. W., van Doorn, J., … Martin, W. S. (2012). First Report of Xanthomonas arboricola pv. pruni in Ornamental Prunus laurocerasus in the Netherlands. Plant Disease, 96(5), 759-759. doi:10.1094/pdis-04-11-0265-pdn

Pothier, J. F., Vorhölter, F.-J., Blom, J., Goesmann, A., Pühler, A., Smits, T. H. M., & Duffy, B. (2011). The ubiquitous plasmid pXap41 in the invasive phytopathogen Xanthomonas arboricola pv. pruni: complete sequence and comparative genomic analysis. FEMS Microbiology Letters, 323(1), 52-60. doi:10.1111/j.1574-6968.2011.02352.x

Palacio-Bielsa, A., Cubero, J., Cambra, M. A., Collados, R., Berruete, I. M., & López, M. M. (2010). Development of an Efficient Real-Time Quantitative PCR Protocol for Detection ofXanthomonas arboricolapv. pruni inPrunusSpecies. Applied and Environmental Microbiology, 77(1), 89-97. doi:10.1128/aem.01593-10

Xanthomonas arboricola pv. pruni. (2006). EPPO Bulletin, 36(1), 129-133. doi:10.1111/j.1365-2338.2006.00925.x

Pagani MC. An ABC transporter protein and molecular diagnoses of Xanthomonas arboricola pv. pruni causing bacterial spot of stone fruits. Raleigh, North Carolina, USA: North Carolina State University, PhD thesis. 2004; Online, http://repository.lib.ncsu.edu/ir/bitstream/1840.16/4540/1/etd.pdf

Park, S. Y., Lee, Y. S., Koh, Y. J., Hur, J.-S., & Jung, J. S. (2010). Detection of Xanthomonas arboricola pv. pruni by PCR using primers based on DNA sequences related to the hrp genes. The Journal of Microbiology, 48(5), 554-558. doi:10.1007/s12275-010-0072-3

Pothier, J. F., Pagani, M. C., Pelludat, C., Ritchie, D. F., & Duffy, B. (2011). A duplex-PCR method for species- and pathovar-level identification and detection of the quarantine plant pathogen Xanthomonas arboricola pv. pruni. Journal of Microbiological Methods, 86(1), 16-24. doi:10.1016/j.mimet.2011.03.019

Ballard, E. L., Dietzgen, R. G., Sly, L. I., Gouk, C., Horlock, C., & Fegan, M. (2011). Development of a Bio-PCR Protocol for the Detection of Xanthomonas arboricola pv. pruni. Plant Disease, 95(9), 1109-1115. doi:10.1094/pdis-09-10-0650

Boonham, N., Glover, R., Tomlinson, J., & Mumford, R. (2008). Exploiting generic platform technologies for the detection and identification of plant pathogens. European Journal of Plant Pathology, 121(3), 355-363. doi:10.1007/s10658-008-9284-3

Posthuma-Trumpie, G. A., Korf, J., & van Amerongen, A. (2008). Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Analytical and Bioanalytical Chemistry, 393(2), 569-582. doi:10.1007/s00216-008-2287-2

De Boer, S. H., & López, M. M. (2012). New Grower-Friendly Methods for Plant Pathogen Monitoring. Annual Review of Phytopathology, 50(1), 197-218. doi:10.1146/annurev-phyto-081211-172942

Thornton, C. R., Groenhof, A. C., Forrest, R., & Lamotte, R. (2004). A One-Step, Immunochromatographic Lateral Flow Device Specific to Rhizoctonia solani and Certain Related Species, and Its Use to Detect and Quantify R. solani in Soil. Phytopathology®, 94(3), 280-288. doi:10.1094/phyto.2004.94.3.280

Lane, C. R., Hobden, E., Walker, L., Barton, V. C., Inman, A. J., Hughes, K. J. D., … Barker, I. (2007). Evaluation of a rapid diagnostic field test kit for identification of Phytophthora species, including P. ramorum and P. kernoviae at the point of inspection. Plant Pathology, 56(5), 828-835. doi:10.1111/j.1365-3059.2007.01615.x

Safenkova, I., Zherdev, A., & Dzantiev, B. (2012). Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X. Analytical and Bioanalytical Chemistry, 403(6), 1595-1605. doi:10.1007/s00216-012-5985-8

Safenkova, I. V., Pankratova, G. K., Zaitsev, I. A., Varitsev, Y. A., Vengerov, Y. Y., Zherdev, A. V., & Dzantiev, B. B. (2016). Multiarray on a test strip (MATS): rapid multiplex immunodetection of priority potato pathogens. Analytical and Bioanalytical Chemistry, 408(22), 6009-6017. doi:10.1007/s00216-016-9463-6

Braun-Kiewnick, A., Altenbach, D., Oberhänsli, T., Bitterlin, W., & Duffy, B. (2011). A rapid lateral-flow immunoassay for phytosanitary detection of Erwinia amylovora and on-site fire blight diagnosis. Journal of Microbiological Methods, 87(1), 1-9. doi:10.1016/j.mimet.2011.06.015

Safenkova, I. V., Zaitsev, I. A., Pankratova, G. K., Varitsev, Y. A., Zherdev, A. V., & Dzantiev, B. B. (2014). Lateral flow immunoassay for rapid detection of potato ring rot caused by Clavibacter michiganensis subsp. sepedonicus. Applied Biochemistry and Microbiology, 50(6), 675-682. doi:10.1134/s0003683814120011

Hodgetts, J., Karamura, G., Johnson, G., Hall, J., Perkins, K., Beed, F., … Smith, J. (2014). Development of a lateral flow device for in-field detection and evaluation of PCR-based diagnostic methods forXanthomonas campestrispv.musacearum, the causal agent of banana xanthomonas wilt. Plant Pathology, 64(3), 559-567. doi:10.1111/ppa.12289

Noguera, P., Posthuma-Trumpie, G. A., van Tuil, M., van der Wal, F. J., de Boer, A., Moers, A. P. H. A., & van Amerongen, A. (2010). Carbon nanoparticles in lateral flow methods to detect genes encoding virulence factors of Shiga toxin-producing Escherichia coli. Analytical and Bioanalytical Chemistry, 399(2), 831-838. doi:10.1007/s00216-010-4334-z

Cambra M, López MM. Titration of Agrobacterium radiobacter var. tumefaciens antibodies by using enzyme labeled anti-rabbit γ-globulines (ELISA indirect method). In: Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, ed. Station Pathologie Végétale, INRA Angers, 1978. pp: 327–331.

O’Keeffe, M., Crabbe, P., Salden, M., Wichers, J., Van Peteghem, C., Kohen, F., … Moneti, G. (2003). Preliminary evaluation of a lateral flow immunoassay device for screening urine samples for the presence of sulphamethazine. Journal of Immunological Methods, 278(1-2), 117-126. doi:10.1016/s0022-1759(03)00207-2

PM 7/98 (2) Specific requirements for laboratories preparing accreditation for a plant pest diagnostic activity. (2014). EPPO Bulletin, 44(2), 117-147. doi:10.1111/epp.12118

Lamichhane, J. R., & Varvaro, L. (2013). Xanthomonas arboricoladisease of hazelnut: current status and future perspectives for its management. Plant Pathology, 63(2), 243-254. doi:10.1111/ppa.12152

Fischer-Le Saux, M., Bonneau, S., Essakhi, S., Manceau, C., & Jacques, M.-A. (2015). Aggressive Emerging Pathovars of Xanthomonas arboricola Represent Widespread Epidemic Clones Distinct from Poorly Pathogenic Strains, as Revealed by Multilocus Sequence Typing. Applied and Environmental Microbiology, 81(14), 4651-4668. doi:10.1128/aem.00050-15

Bühlmann, A., Pothier, J. F., Tomlinson, J. A., Frey, J. E., Boonham, N., Smits, T. H. M., & Duffy, B. (2012). Genomics-informed design of loop-mediated isothermal amplification for detection of phytopathogenicXanthomonas arboricolapv. pruniat the intraspecific level. Plant Pathology, 62(2), 475-484. doi:10.1111/j.1365-3059.2012.02654.x

Garita-Cambronero, J., Palacio-Bielsa, A., López, M. M., & Cubero, J. (2017). Pan-Genomic Analysis Permits Differentiation of Virulent and Non-virulent Strains of Xanthomonas arboricola That Cohabit Prunus spp. and Elucidate Bacterial Virulence Factors. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.00573

Ghezzi, J. I., & Steck, T. R. (1999). Induction of the viable but non-culturable condition in Xanthomonas campestris pv. campestris in liquid microcosms and sterile soil. FEMS Microbiology Ecology, 30(3), 203-208. doi:10.1111/j.1574-6941.1999.tb00648.x

Del Campo, R., Russi, P., Mara, P., Mara, Hã©., Peyrou, M., de León, I. P., & Gaggero, C. (2009). Xanthomonas axonopodispv.citriâ enters the VBNC state after copper treatment and retains its virulence. FEMS Microbiology Letters, 298(2), 143-148. doi:10.1111/j.1574-6968.2009.01709.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem