Zheng, M., Asad, U., Reader, G. T., Tan, Y., & Wang, M. (2009). Energy efficiency improvement strategies for a diesel engine in low-temperature combustion. International Journal of Energy Research, 33(1), 8-28. doi:10.1002/er.1464
Jacobs, T. J., & Assanis, D. N. (2007). The attainment of premixed compression ignition low-temperature combustion in a compression ignition direct injection engine. Proceedings of the Combustion Institute, 31(2), 2913-2920. doi:10.1016/j.proci.2006.08.113
Zhu, L., Cheung, C. S., Zhang, W. G., & Huang, Z. (2011). Effect of charge dilution on gaseous and particulate emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol and ethanol. Applied Thermal Engineering, 31(14-15), 2271-2278. doi:10.1016/j.applthermaleng.2011.03.023
[+]
Zheng, M., Asad, U., Reader, G. T., Tan, Y., & Wang, M. (2009). Energy efficiency improvement strategies for a diesel engine in low-temperature combustion. International Journal of Energy Research, 33(1), 8-28. doi:10.1002/er.1464
Jacobs, T. J., & Assanis, D. N. (2007). The attainment of premixed compression ignition low-temperature combustion in a compression ignition direct injection engine. Proceedings of the Combustion Institute, 31(2), 2913-2920. doi:10.1016/j.proci.2006.08.113
Zhu, L., Cheung, C. S., Zhang, W. G., & Huang, Z. (2011). Effect of charge dilution on gaseous and particulate emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol and ethanol. Applied Thermal Engineering, 31(14-15), 2271-2278. doi:10.1016/j.applthermaleng.2011.03.023
Wang, Y., Zhao, Y., Xiao, F., & Li, D. (2014). Combustion and emission characteristics of a diesel engine with DME as port premixing fuel under different injection timing. Energy Conversion and Management, 77, 52-60. doi:10.1016/j.enconman.2013.09.011
Payri, F., Desantes, J. M., & Pastor, J. V. (1996). LDV measurements of the flow inside the combustion chamber of a 4-valve D.I. diesel engine with axisymmetric piston-bowls. Experiments in Fluids, 22(2), 118-128. doi:10.1007/s003480050029
Qiu, L., Cheng, X., Liu, B., Dong, S., & Bao, Z. (2016). Partially premixed combustion based on different injection strategies in a light-duty diesel engine. Energy, 96, 155-165. doi:10.1016/j.energy.2015.12.052
Mathivanan, K., J. M. Mallikarjuna, & Ramesh, A. (2016). Influence of multiple fuel injection strategies on performance and combustion characteristics of a diesel fuelled HCCI engine – An experimental investigation. Experimental Thermal and Fluid Science, 77, 337-346. doi:10.1016/j.expthermflusci.2016.05.010
Singh, A. P., & Agarwal, A. K. (2012). Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique. Applied Energy, 99, 116-125. doi:10.1016/j.apenergy.2012.03.060
Maurya, R. K., & Agarwal, A. K. (2011). Experimental investigation on the effect of intake air temperature and air–fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters. Applied Energy, 88(4), 1153-1163. doi:10.1016/j.apenergy.2010.09.027
Zhang, X., Wang, H., Zheng, Z., Reitz, R., & Yao, M. (2016). Experimental investigations of gasoline partially premixed combustion with an exhaust rebreathing valve strategy at low loads. Applied Thermal Engineering, 103, 832-841. doi:10.1016/j.applthermaleng.2016.04.147
Kalghatgi, G. T., Kumara Gurubaran, R., Davenport, A., Harrison, A. J., Hardalupas, Y., & Taylor, A. M. K. P. (2013). Some advantages and challenges of running a Euro IV, V6 diesel engine on a gasoline fuel. Fuel, 108, 197-207. doi:10.1016/j.fuel.2012.10.059
Leermakers, C. A. J., Bakker, P. C., Nijssen, B. C. W., Somers, L. M. T., & Johansson, B. H. (2014). Low octane fuel composition effects on the load range capability of partially premixed combustion. Fuel, 135, 210-222. doi:10.1016/j.fuel.2014.06.044
Benajes, J., Molina, S., García, A., Monsalve-Serrano, J., & Durrett, R. (2014). Conceptual model description of the double injection strategy applied to the gasoline partially premixed compression ignition combustion concept with spark assistance. Applied Energy, 129, 1-9. doi:10.1016/j.apenergy.2014.04.093
Benajes, J., Molina, S., García, A., Monsalve-Serrano, J., & Durrett, R. (2014). Performance and engine-out emissions evaluation of the double injection strategy applied to the gasoline partially premixed compression ignition spark assisted combustion concept. Applied Energy, 134, 90-101. doi:10.1016/j.apenergy.2014.08.008
Park, S. H., Youn, I. M., Lim, Y., & Lee, C. S. (2013). Influence of the mixture of gasoline and diesel fuels on droplet atomization, combustion, and exhaust emission characteristics in a compression ignition engine. Fuel Processing Technology, 106, 392-401. doi:10.1016/j.fuproc.2012.09.004
Bessonette, P. W., Schleyer, C. H., Duffy, K. P., Hardy, W. L., & Liechty, M. P. (2007). Effects of Fuel Property Changes on Heavy-Duty HCCI Combustion. SAE Technical Paper Series. doi:10.4271/2007-01-0191
Inagaki, K., Fuyuto, T., Nishikawa, K., Nakakita, K., & Sakata, I. (2006). Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability. SAE Technical Paper Series. doi:10.4271/2006-01-0028
Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2011). Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. International Journal of Engine Research, 12(3), 209-226. doi:10.1177/1468087411401548
Dempsey, A. B., Das Adhikary, B., Viswanathan, S., & Reitz, R. D. (2012). Reactivity Controlled Compression Ignition Using Premixed Hydrated Ethanol and Direct Injection Diesel. Journal of Engineering for Gas Turbines and Power, 134(8). doi:10.1115/1.4006703
Benajes, J., Molina, S., García, A., Belarte, E., & Vanvolsem, M. (2014). An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels. Applied Thermal Engineering, 63(1), 66-76. doi:10.1016/j.applthermaleng.2013.10.052
Hanson, R. M., Kokjohn, S. L., Splitter, D. A., & Reitz, R. D. (2010). An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine. SAE International Journal of Engines, 3(1), 700-716. doi:10.4271/2010-01-0864
Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel, 159, 952-961. doi:10.1016/j.fuel.2015.07.064
Ma, S., Zheng, Z., Liu, H., Zhang, Q., & Yao, M. (2013). Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion. Applied Energy, 109, 202-212. doi:10.1016/j.apenergy.2013.04.012
Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003
Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005
Lapuerta, M., Ballesteros, R., & Agudelo, J. R. (2006). Effect of the gas state equation on the thermodynamic diagnostic of diesel combustion. Applied Thermal Engineering, 26(14-15), 1492-1499. doi:10.1016/j.applthermaleng.2006.01.001
Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1
Woschni, G. (1967). A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine. SAE Technical Paper Series. doi:10.4271/670931
Payri, F., Margot, X., Gil, A., & Martin, J. (2005). Computational Study of Heat Transfer to the Walls of a DI Diesel Engine. SAE Technical Paper Series. doi:10.4271/2005-01-0210
Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021
Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665
Cheng, A. S. (Ed), Upatnieks, A., & Mueller, C. J. (2007). Investigation of Fuel Effects on Dilute, Mixing-Controlled Combustion in an Optical Direct-Injection Diesel Engine. Energy & Fuels, 21(4), 1989-2002. doi:10.1021/ef0606456
Kono, M., Basaki, M., Ito, M., Hashizume, T., Ishiyama, S., & Inagaki, K. (2012). Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine. SAE International Journal of Engines, 5(2), 504-515. doi:10.4271/2012-01-0689
Splitter, D., Wissink, M., Kokjohn, S., & Reitz, R. D. (2012). Effect of Compression Ratio and Piston Geometry on RCCI Load Limits and Efficiency. SAE Technical Paper Series. doi:10.4271/2012-01-0383
Hanson, R., Curran, S., Wagner, R., Kokjohn, S., Splitter, D., & Reitz, R. D. (2012). Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine. SAE International Journal of Engines, 5(2), 286-299. doi:10.4271/2012-01-0380
Tutak, W. (2014). Bioethanol E85 as a fuel for dual fuel diesel engine. Energy Conversion and Management, 86, 39-48. doi:10.1016/j.enconman.2014.05.016
Desantes, J. M., Lopez, J. J., Garcia, J. M., & Pastor, J. M. (2007). EVAPORATIVE DIESEL SPRAY MODELING. Atomization and Sprays, 17(3), 193-231. doi:10.1615/atomizspr.v17.i3.10
Desantes, J. M., Arregle, J., Lopez, J. J., & Cronhjort, A. (2006). SCALING LAWS FOR FREE TURBULENT GAS JETS AND DIESEL-LIKE SPRAYS. Atomization and Sprays, 16(4), 443-474. doi:10.1615/atomizspr.v16.i4.60
[-]