- -

Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines

Mostrar el registro completo del ítem

Benajes, J.; García Martínez, A.; Monsalve-Serrano, J.; Boronat-Colomer, V. (2017). Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines. Applied Sciences. 7(1):1-16. https://doi.org/10.3390/app7010036

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148907

Ficheros en el ítem

Metadatos del ítem

Título: Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines
Autor: Benajes, Jesús García Martínez, Antonio Monsalve-Serrano, Javier Boronat-Colomer, Vicente
Entidad UPV: Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics
Fecha difusión:
Resumen:
[EN] Stringent emissions limits introduced for internal combustion engines impose a major challenge for the research community. The technological solution adopted by the manufactures of diesel engines to meet the NOx and ...[+]
Palabras clave: Reactivity controlled compression ignition , Efficiency , EURO VI emissions , Dual-fuel
Derechos de uso: Reconocimiento (by)
Fuente:
Applied Sciences. (eissn: 2076-3417 )
DOI: 10.3390/app7010036
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/app7010036
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//TRA2014-58870-R/ES/REDUCCION DE LAS EMISIONES DE CO2 EN VEHICULOS PARA TRANSPORTE USANDO COMBUSTION DUAL NATURAL GAS-DIESEL/
info:eu-repo/grantAgreement/UPV//FPI-S2-2015-1531/
Agradecimientos:
The authors acknowledge VOLVO Group Trucks Technology for supporting this research and express their gratitude to the Spanish economy and competitiveness ministry for partially funding this investigation under the project ...[+]
Tipo: Artículo

References

Zheng, M., Asad, U., Reader, G. T., Tan, Y., & Wang, M. (2009). Energy efficiency improvement strategies for a diesel engine in low-temperature combustion. International Journal of Energy Research, 33(1), 8-28. doi:10.1002/er.1464

Jacobs, T. J., & Assanis, D. N. (2007). The attainment of premixed compression ignition low-temperature combustion in a compression ignition direct injection engine. Proceedings of the Combustion Institute, 31(2), 2913-2920. doi:10.1016/j.proci.2006.08.113

Zhu, L., Cheung, C. S., Zhang, W. G., & Huang, Z. (2011). Effect of charge dilution on gaseous and particulate emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol and ethanol. Applied Thermal Engineering, 31(14-15), 2271-2278. doi:10.1016/j.applthermaleng.2011.03.023 [+]
Zheng, M., Asad, U., Reader, G. T., Tan, Y., & Wang, M. (2009). Energy efficiency improvement strategies for a diesel engine in low-temperature combustion. International Journal of Energy Research, 33(1), 8-28. doi:10.1002/er.1464

Jacobs, T. J., & Assanis, D. N. (2007). The attainment of premixed compression ignition low-temperature combustion in a compression ignition direct injection engine. Proceedings of the Combustion Institute, 31(2), 2913-2920. doi:10.1016/j.proci.2006.08.113

Zhu, L., Cheung, C. S., Zhang, W. G., & Huang, Z. (2011). Effect of charge dilution on gaseous and particulate emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol and ethanol. Applied Thermal Engineering, 31(14-15), 2271-2278. doi:10.1016/j.applthermaleng.2011.03.023

Wang, Y., Zhao, Y., Xiao, F., & Li, D. (2014). Combustion and emission characteristics of a diesel engine with DME as port premixing fuel under different injection timing. Energy Conversion and Management, 77, 52-60. doi:10.1016/j.enconman.2013.09.011

Payri, F., Desantes, J. M., & Pastor, J. V. (1996). LDV measurements of the flow inside the combustion chamber of a 4-valve D.I. diesel engine with axisymmetric piston-bowls. Experiments in Fluids, 22(2), 118-128. doi:10.1007/s003480050029

Qiu, L., Cheng, X., Liu, B., Dong, S., & Bao, Z. (2016). Partially premixed combustion based on different injection strategies in a light-duty diesel engine. Energy, 96, 155-165. doi:10.1016/j.energy.2015.12.052

Mathivanan, K., J. M. Mallikarjuna, & Ramesh, A. (2016). Influence of multiple fuel injection strategies on performance and combustion characteristics of a diesel fuelled HCCI engine – An experimental investigation. Experimental Thermal and Fluid Science, 77, 337-346. doi:10.1016/j.expthermflusci.2016.05.010

Singh, A. P., & Agarwal, A. K. (2012). Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique. Applied Energy, 99, 116-125. doi:10.1016/j.apenergy.2012.03.060

Maurya, R. K., & Agarwal, A. K. (2011). Experimental investigation on the effect of intake air temperature and air–fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters. Applied Energy, 88(4), 1153-1163. doi:10.1016/j.apenergy.2010.09.027

Zhang, X., Wang, H., Zheng, Z., Reitz, R., & Yao, M. (2016). Experimental investigations of gasoline partially premixed combustion with an exhaust rebreathing valve strategy at low loads. Applied Thermal Engineering, 103, 832-841. doi:10.1016/j.applthermaleng.2016.04.147

Kalghatgi, G. T., Kumara Gurubaran, R., Davenport, A., Harrison, A. J., Hardalupas, Y., & Taylor, A. M. K. P. (2013). Some advantages and challenges of running a Euro IV, V6 diesel engine on a gasoline fuel. Fuel, 108, 197-207. doi:10.1016/j.fuel.2012.10.059

Leermakers, C. A. J., Bakker, P. C., Nijssen, B. C. W., Somers, L. M. T., & Johansson, B. H. (2014). Low octane fuel composition effects on the load range capability of partially premixed combustion. Fuel, 135, 210-222. doi:10.1016/j.fuel.2014.06.044

Benajes, J., Molina, S., García, A., Monsalve-Serrano, J., & Durrett, R. (2014). Conceptual model description of the double injection strategy applied to the gasoline partially premixed compression ignition combustion concept with spark assistance. Applied Energy, 129, 1-9. doi:10.1016/j.apenergy.2014.04.093

Benajes, J., Molina, S., García, A., Monsalve-Serrano, J., & Durrett, R. (2014). Performance and engine-out emissions evaluation of the double injection strategy applied to the gasoline partially premixed compression ignition spark assisted combustion concept. Applied Energy, 134, 90-101. doi:10.1016/j.apenergy.2014.08.008

Park, S. H., Youn, I. M., Lim, Y., & Lee, C. S. (2013). Influence of the mixture of gasoline and diesel fuels on droplet atomization, combustion, and exhaust emission characteristics in a compression ignition engine. Fuel Processing Technology, 106, 392-401. doi:10.1016/j.fuproc.2012.09.004

Bessonette, P. W., Schleyer, C. H., Duffy, K. P., Hardy, W. L., & Liechty, M. P. (2007). Effects of Fuel Property Changes on Heavy-Duty HCCI Combustion. SAE Technical Paper Series. doi:10.4271/2007-01-0191

Inagaki, K., Fuyuto, T., Nishikawa, K., Nakakita, K., & Sakata, I. (2006). Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability. SAE Technical Paper Series. doi:10.4271/2006-01-0028

Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2011). Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. International Journal of Engine Research, 12(3), 209-226. doi:10.1177/1468087411401548

Dempsey, A. B., Das Adhikary, B., Viswanathan, S., & Reitz, R. D. (2012). Reactivity Controlled Compression Ignition Using Premixed Hydrated Ethanol and Direct Injection Diesel. Journal of Engineering for Gas Turbines and Power, 134(8). doi:10.1115/1.4006703

Benajes, J., Molina, S., García, A., Belarte, E., & Vanvolsem, M. (2014). An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels. Applied Thermal Engineering, 63(1), 66-76. doi:10.1016/j.applthermaleng.2013.10.052

Hanson, R. M., Kokjohn, S. L., Splitter, D. A., & Reitz, R. D. (2010). An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine. SAE International Journal of Engines, 3(1), 700-716. doi:10.4271/2010-01-0864

Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel, 159, 952-961. doi:10.1016/j.fuel.2015.07.064

Ma, S., Zheng, Z., Liu, H., Zhang, Q., & Yao, M. (2013). Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion. Applied Energy, 109, 202-212. doi:10.1016/j.apenergy.2013.04.012

Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003

Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005

Lapuerta, M., Ballesteros, R., & Agudelo, J. R. (2006). Effect of the gas state equation on the thermodynamic diagnostic of diesel combustion. Applied Thermal Engineering, 26(14-15), 1492-1499. doi:10.1016/j.applthermaleng.2006.01.001

Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1

Woschni, G. (1967). A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine. SAE Technical Paper Series. doi:10.4271/670931

Payri, F., Margot, X., Gil, A., & Martin, J. (2005). Computational Study of Heat Transfer to the Walls of a DI Diesel Engine. SAE Technical Paper Series. doi:10.4271/2005-01-0210

Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021

Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665

Cheng, A. S. (Ed), Upatnieks, A., & Mueller, C. J. (2007). Investigation of Fuel Effects on Dilute, Mixing-Controlled Combustion in an Optical Direct-Injection Diesel Engine. Energy & Fuels, 21(4), 1989-2002. doi:10.1021/ef0606456

Kono, M., Basaki, M., Ito, M., Hashizume, T., Ishiyama, S., & Inagaki, K. (2012). Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine. SAE International Journal of Engines, 5(2), 504-515. doi:10.4271/2012-01-0689

Splitter, D., Wissink, M., Kokjohn, S., & Reitz, R. D. (2012). Effect of Compression Ratio and Piston Geometry on RCCI Load Limits and Efficiency. SAE Technical Paper Series. doi:10.4271/2012-01-0383

Hanson, R., Curran, S., Wagner, R., Kokjohn, S., Splitter, D., & Reitz, R. D. (2012). Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine. SAE International Journal of Engines, 5(2), 286-299. doi:10.4271/2012-01-0380

Tutak, W. (2014). Bioethanol E85 as a fuel for dual fuel diesel engine. Energy Conversion and Management, 86, 39-48. doi:10.1016/j.enconman.2014.05.016

Desantes, J. M., Lopez, J. J., Garcia, J. M., & Pastor, J. M. (2007). EVAPORATIVE DIESEL SPRAY MODELING. Atomization and Sprays, 17(3), 193-231. doi:10.1615/atomizspr.v17.i3.10

Desantes, J. M., Arregle, J., Lopez, J. J., & Cronhjort, A. (2006). SCALING LAWS FOR FREE TURBULENT GAS JETS AND DIESEL-LIKE SPRAYS. Atomization and Sprays, 16(4), 443-474. doi:10.1615/atomizspr.v16.i4.60

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem