- -

Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Benajes, Jesús es_ES
dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Monsalve-Serrano, Javier es_ES
dc.contributor.author Boronat-Colomer, Vicente es_ES
dc.date.accessioned 2020-07-30T03:35:36Z
dc.date.available 2020-07-30T03:35:36Z
dc.date.issued 2017-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148907
dc.description.abstract [EN] Stringent emissions limits introduced for internal combustion engines impose a major challenge for the research community. The technological solution adopted by the manufactures of diesel engines to meet the NOx and particle matter values imposed in the EURO VI regulation relies on using selective catalytic reduction and particulate filter systems, which increases the complexity and cost of the engine. Alternatively, several new combustion modes aimed at avoiding the formation of these two pollutants by promoting low temperature combustion reactions, are the focus of study nowadays. Among these new concepts, the dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI) seems more promising because it allows better control of the combustion process by means of modulating the fuel reactivity depending on the engine operating conditions. The present experimental work explores the potential of different strategies for reducing the energy losses with RCCI in a single-cylinder research engine, with the final goal of providing the guidelines to define an efficient dual-fuel combustion system. The results demonstrate that the engine settings combination, piston geometry modification, and fuel properties variation are good methods to increase the RCCI efficiency while maintaining ultra-low NOx and soot emissions for a wide range of operating conditions. es_ES
dc.description.sponsorship The authors acknowledge VOLVO Group Trucks Technology for supporting this research and express their gratitude to the Spanish economy and competitiveness ministry for partially funding this investigation under the project HiReCo (TRA2014-58870-R). The author J. Monsalve-Serrano thanks the Universitat Politecnica de Valencia for his predoctoral contract (FPI-S2-2015-1531), which is included within the framework of Programa de Apoyo para la Investigacion y Desarrollo (PAID). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Reactivity controlled compression ignition es_ES
dc.subject Efficiency es_ES
dc.subject EURO VI emissions es_ES
dc.subject Dual-fuel es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app7010036 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2014-58870-R/ES/REDUCCION DE LAS EMISIONES DE CO2 EN VEHICULOS PARA TRANSPORTE USANDO COMBUSTION DUAL NATURAL GAS-DIESEL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-S2-2015-1531/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Benajes, J.; García Martínez, A.; Monsalve-Serrano, J.; Boronat-Colomer, V. (2017). Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines. Applied Sciences. 7(1):1-16. https://doi.org/10.3390/app7010036 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app7010036 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\324664 es_ES
dc.contributor.funder Volvo Group Trucks Technology es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Zheng, M., Asad, U., Reader, G. T., Tan, Y., & Wang, M. (2009). Energy efficiency improvement strategies for a diesel engine in low-temperature combustion. International Journal of Energy Research, 33(1), 8-28. doi:10.1002/er.1464 es_ES
dc.description.references Jacobs, T. J., & Assanis, D. N. (2007). The attainment of premixed compression ignition low-temperature combustion in a compression ignition direct injection engine. Proceedings of the Combustion Institute, 31(2), 2913-2920. doi:10.1016/j.proci.2006.08.113 es_ES
dc.description.references Zhu, L., Cheung, C. S., Zhang, W. G., & Huang, Z. (2011). Effect of charge dilution on gaseous and particulate emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol and ethanol. Applied Thermal Engineering, 31(14-15), 2271-2278. doi:10.1016/j.applthermaleng.2011.03.023 es_ES
dc.description.references Wang, Y., Zhao, Y., Xiao, F., & Li, D. (2014). Combustion and emission characteristics of a diesel engine with DME as port premixing fuel under different injection timing. Energy Conversion and Management, 77, 52-60. doi:10.1016/j.enconman.2013.09.011 es_ES
dc.description.references Payri, F., Desantes, J. M., & Pastor, J. V. (1996). LDV measurements of the flow inside the combustion chamber of a 4-valve D.I. diesel engine with axisymmetric piston-bowls. Experiments in Fluids, 22(2), 118-128. doi:10.1007/s003480050029 es_ES
dc.description.references Qiu, L., Cheng, X., Liu, B., Dong, S., & Bao, Z. (2016). Partially premixed combustion based on different injection strategies in a light-duty diesel engine. Energy, 96, 155-165. doi:10.1016/j.energy.2015.12.052 es_ES
dc.description.references Mathivanan, K., J. M. Mallikarjuna, & Ramesh, A. (2016). Influence of multiple fuel injection strategies on performance and combustion characteristics of a diesel fuelled HCCI engine – An experimental investigation. Experimental Thermal and Fluid Science, 77, 337-346. doi:10.1016/j.expthermflusci.2016.05.010 es_ES
dc.description.references Singh, A. P., & Agarwal, A. K. (2012). Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique. Applied Energy, 99, 116-125. doi:10.1016/j.apenergy.2012.03.060 es_ES
dc.description.references Maurya, R. K., & Agarwal, A. K. (2011). Experimental investigation on the effect of intake air temperature and air–fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters. Applied Energy, 88(4), 1153-1163. doi:10.1016/j.apenergy.2010.09.027 es_ES
dc.description.references Zhang, X., Wang, H., Zheng, Z., Reitz, R., & Yao, M. (2016). Experimental investigations of gasoline partially premixed combustion with an exhaust rebreathing valve strategy at low loads. Applied Thermal Engineering, 103, 832-841. doi:10.1016/j.applthermaleng.2016.04.147 es_ES
dc.description.references Kalghatgi, G. T., Kumara Gurubaran, R., Davenport, A., Harrison, A. J., Hardalupas, Y., & Taylor, A. M. K. P. (2013). Some advantages and challenges of running a Euro IV, V6 diesel engine on a gasoline fuel. Fuel, 108, 197-207. doi:10.1016/j.fuel.2012.10.059 es_ES
dc.description.references Leermakers, C. A. J., Bakker, P. C., Nijssen, B. C. W., Somers, L. M. T., & Johansson, B. H. (2014). Low octane fuel composition effects on the load range capability of partially premixed combustion. Fuel, 135, 210-222. doi:10.1016/j.fuel.2014.06.044 es_ES
dc.description.references Benajes, J., Molina, S., García, A., Monsalve-Serrano, J., & Durrett, R. (2014). Conceptual model description of the double injection strategy applied to the gasoline partially premixed compression ignition combustion concept with spark assistance. Applied Energy, 129, 1-9. doi:10.1016/j.apenergy.2014.04.093 es_ES
dc.description.references Benajes, J., Molina, S., García, A., Monsalve-Serrano, J., & Durrett, R. (2014). Performance and engine-out emissions evaluation of the double injection strategy applied to the gasoline partially premixed compression ignition spark assisted combustion concept. Applied Energy, 134, 90-101. doi:10.1016/j.apenergy.2014.08.008 es_ES
dc.description.references Park, S. H., Youn, I. M., Lim, Y., & Lee, C. S. (2013). Influence of the mixture of gasoline and diesel fuels on droplet atomization, combustion, and exhaust emission characteristics in a compression ignition engine. Fuel Processing Technology, 106, 392-401. doi:10.1016/j.fuproc.2012.09.004 es_ES
dc.description.references Bessonette, P. W., Schleyer, C. H., Duffy, K. P., Hardy, W. L., & Liechty, M. P. (2007). Effects of Fuel Property Changes on Heavy-Duty HCCI Combustion. SAE Technical Paper Series. doi:10.4271/2007-01-0191 es_ES
dc.description.references Inagaki, K., Fuyuto, T., Nishikawa, K., Nakakita, K., & Sakata, I. (2006). Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability. SAE Technical Paper Series. doi:10.4271/2006-01-0028 es_ES
dc.description.references Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2011). Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. International Journal of Engine Research, 12(3), 209-226. doi:10.1177/1468087411401548 es_ES
dc.description.references Dempsey, A. B., Das Adhikary, B., Viswanathan, S., & Reitz, R. D. (2012). Reactivity Controlled Compression Ignition Using Premixed Hydrated Ethanol and Direct Injection Diesel. Journal of Engineering for Gas Turbines and Power, 134(8). doi:10.1115/1.4006703 es_ES
dc.description.references Benajes, J., Molina, S., García, A., Belarte, E., & Vanvolsem, M. (2014). An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels. Applied Thermal Engineering, 63(1), 66-76. doi:10.1016/j.applthermaleng.2013.10.052 es_ES
dc.description.references Hanson, R. M., Kokjohn, S. L., Splitter, D. A., & Reitz, R. D. (2010). An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine. SAE International Journal of Engines, 3(1), 700-716. doi:10.4271/2010-01-0864 es_ES
dc.description.references Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel, 159, 952-961. doi:10.1016/j.fuel.2015.07.064 es_ES
dc.description.references Ma, S., Zheng, Z., Liu, H., Zhang, Q., & Yao, M. (2013). Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion. Applied Energy, 109, 202-212. doi:10.1016/j.apenergy.2013.04.012 es_ES
dc.description.references Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003 es_ES
dc.description.references Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005 es_ES
dc.description.references Lapuerta, M., Ballesteros, R., & Agudelo, J. R. (2006). Effect of the gas state equation on the thermodynamic diagnostic of diesel combustion. Applied Thermal Engineering, 26(14-15), 1492-1499. doi:10.1016/j.applthermaleng.2006.01.001 es_ES
dc.description.references Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1 es_ES
dc.description.references Woschni, G. (1967). A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine. SAE Technical Paper Series. doi:10.4271/670931 es_ES
dc.description.references Payri, F., Margot, X., Gil, A., & Martin, J. (2005). Computational Study of Heat Transfer to the Walls of a DI Diesel Engine. SAE Technical Paper Series. doi:10.4271/2005-01-0210 es_ES
dc.description.references Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021 es_ES
dc.description.references Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665 es_ES
dc.description.references Cheng, A. S. (Ed), Upatnieks, A., & Mueller, C. J. (2007). Investigation of Fuel Effects on Dilute, Mixing-Controlled Combustion in an Optical Direct-Injection Diesel Engine. Energy & Fuels, 21(4), 1989-2002. doi:10.1021/ef0606456 es_ES
dc.description.references Kono, M., Basaki, M., Ito, M., Hashizume, T., Ishiyama, S., & Inagaki, K. (2012). Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine. SAE International Journal of Engines, 5(2), 504-515. doi:10.4271/2012-01-0689 es_ES
dc.description.references Splitter, D., Wissink, M., Kokjohn, S., & Reitz, R. D. (2012). Effect of Compression Ratio and Piston Geometry on RCCI Load Limits and Efficiency. SAE Technical Paper Series. doi:10.4271/2012-01-0383 es_ES
dc.description.references Hanson, R., Curran, S., Wagner, R., Kokjohn, S., Splitter, D., & Reitz, R. D. (2012). Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine. SAE International Journal of Engines, 5(2), 286-299. doi:10.4271/2012-01-0380 es_ES
dc.description.references Tutak, W. (2014). Bioethanol E85 as a fuel for dual fuel diesel engine. Energy Conversion and Management, 86, 39-48. doi:10.1016/j.enconman.2014.05.016 es_ES
dc.description.references Desantes, J. M., Lopez, J. J., Garcia, J. M., & Pastor, J. M. (2007). EVAPORATIVE DIESEL SPRAY MODELING. Atomization and Sprays, 17(3), 193-231. doi:10.1615/atomizspr.v17.i3.10 es_ES
dc.description.references Desantes, J. M., Arregle, J., Lopez, J. J., & Cronhjort, A. (2006). SCALING LAWS FOR FREE TURBULENT GAS JETS AND DIESEL-LIKE SPRAYS. Atomization and Sprays, 16(4), 443-474. doi:10.1615/atomizspr.v16.i4.60 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem