Mostrar el registro sencillo del ítem
dc.contributor.author | Benajes, Jesús | es_ES |
dc.contributor.author | García Martínez, Antonio | es_ES |
dc.contributor.author | Monsalve-Serrano, Javier | es_ES |
dc.contributor.author | Boronat-Colomer, Vicente | es_ES |
dc.date.accessioned | 2020-07-30T03:35:36Z | |
dc.date.available | 2020-07-30T03:35:36Z | |
dc.date.issued | 2017-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148907 | |
dc.description.abstract | [EN] Stringent emissions limits introduced for internal combustion engines impose a major challenge for the research community. The technological solution adopted by the manufactures of diesel engines to meet the NOx and particle matter values imposed in the EURO VI regulation relies on using selective catalytic reduction and particulate filter systems, which increases the complexity and cost of the engine. Alternatively, several new combustion modes aimed at avoiding the formation of these two pollutants by promoting low temperature combustion reactions, are the focus of study nowadays. Among these new concepts, the dual-fuel combustion mode known as reactivity controlled compression ignition (RCCI) seems more promising because it allows better control of the combustion process by means of modulating the fuel reactivity depending on the engine operating conditions. The present experimental work explores the potential of different strategies for reducing the energy losses with RCCI in a single-cylinder research engine, with the final goal of providing the guidelines to define an efficient dual-fuel combustion system. The results demonstrate that the engine settings combination, piston geometry modification, and fuel properties variation are good methods to increase the RCCI efficiency while maintaining ultra-low NOx and soot emissions for a wide range of operating conditions. | es_ES |
dc.description.sponsorship | The authors acknowledge VOLVO Group Trucks Technology for supporting this research and express their gratitude to the Spanish economy and competitiveness ministry for partially funding this investigation under the project HiReCo (TRA2014-58870-R). The author J. Monsalve-Serrano thanks the Universitat Politecnica de Valencia for his predoctoral contract (FPI-S2-2015-1531), which is included within the framework of Programa de Apoyo para la Investigacion y Desarrollo (PAID). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Applied Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Reactivity controlled compression ignition | es_ES |
dc.subject | Efficiency | es_ES |
dc.subject | EURO VI emissions | es_ES |
dc.subject | Dual-fuel | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/app7010036 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TRA2014-58870-R/ES/REDUCCION DE LAS EMISIONES DE CO2 EN VEHICULOS PARA TRANSPORTE USANDO COMBUSTION DUAL NATURAL GAS-DIESEL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//FPI-S2-2015-1531/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics | es_ES |
dc.description.bibliographicCitation | Benajes, J.; García Martínez, A.; Monsalve-Serrano, J.; Boronat-Colomer, V. (2017). Dual-Fuel Combustion for Future Clean and Efficient Compression Ignition Engines. Applied Sciences. 7(1):1-16. https://doi.org/10.3390/app7010036 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/app7010036 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2076-3417 | es_ES |
dc.relation.pasarela | S\324664 | es_ES |
dc.contributor.funder | Volvo Group Trucks Technology | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Zheng, M., Asad, U., Reader, G. T., Tan, Y., & Wang, M. (2009). Energy efficiency improvement strategies for a diesel engine in low-temperature combustion. International Journal of Energy Research, 33(1), 8-28. doi:10.1002/er.1464 | es_ES |
dc.description.references | Jacobs, T. J., & Assanis, D. N. (2007). The attainment of premixed compression ignition low-temperature combustion in a compression ignition direct injection engine. Proceedings of the Combustion Institute, 31(2), 2913-2920. doi:10.1016/j.proci.2006.08.113 | es_ES |
dc.description.references | Zhu, L., Cheung, C. S., Zhang, W. G., & Huang, Z. (2011). Effect of charge dilution on gaseous and particulate emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol and ethanol. Applied Thermal Engineering, 31(14-15), 2271-2278. doi:10.1016/j.applthermaleng.2011.03.023 | es_ES |
dc.description.references | Wang, Y., Zhao, Y., Xiao, F., & Li, D. (2014). Combustion and emission characteristics of a diesel engine with DME as port premixing fuel under different injection timing. Energy Conversion and Management, 77, 52-60. doi:10.1016/j.enconman.2013.09.011 | es_ES |
dc.description.references | Payri, F., Desantes, J. M., & Pastor, J. V. (1996). LDV measurements of the flow inside the combustion chamber of a 4-valve D.I. diesel engine with axisymmetric piston-bowls. Experiments in Fluids, 22(2), 118-128. doi:10.1007/s003480050029 | es_ES |
dc.description.references | Qiu, L., Cheng, X., Liu, B., Dong, S., & Bao, Z. (2016). Partially premixed combustion based on different injection strategies in a light-duty diesel engine. Energy, 96, 155-165. doi:10.1016/j.energy.2015.12.052 | es_ES |
dc.description.references | Mathivanan, K., J. M. Mallikarjuna, & Ramesh, A. (2016). Influence of multiple fuel injection strategies on performance and combustion characteristics of a diesel fuelled HCCI engine – An experimental investigation. Experimental Thermal and Fluid Science, 77, 337-346. doi:10.1016/j.expthermflusci.2016.05.010 | es_ES |
dc.description.references | Singh, A. P., & Agarwal, A. K. (2012). Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique. Applied Energy, 99, 116-125. doi:10.1016/j.apenergy.2012.03.060 | es_ES |
dc.description.references | Maurya, R. K., & Agarwal, A. K. (2011). Experimental investigation on the effect of intake air temperature and air–fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters. Applied Energy, 88(4), 1153-1163. doi:10.1016/j.apenergy.2010.09.027 | es_ES |
dc.description.references | Zhang, X., Wang, H., Zheng, Z., Reitz, R., & Yao, M. (2016). Experimental investigations of gasoline partially premixed combustion with an exhaust rebreathing valve strategy at low loads. Applied Thermal Engineering, 103, 832-841. doi:10.1016/j.applthermaleng.2016.04.147 | es_ES |
dc.description.references | Kalghatgi, G. T., Kumara Gurubaran, R., Davenport, A., Harrison, A. J., Hardalupas, Y., & Taylor, A. M. K. P. (2013). Some advantages and challenges of running a Euro IV, V6 diesel engine on a gasoline fuel. Fuel, 108, 197-207. doi:10.1016/j.fuel.2012.10.059 | es_ES |
dc.description.references | Leermakers, C. A. J., Bakker, P. C., Nijssen, B. C. W., Somers, L. M. T., & Johansson, B. H. (2014). Low octane fuel composition effects on the load range capability of partially premixed combustion. Fuel, 135, 210-222. doi:10.1016/j.fuel.2014.06.044 | es_ES |
dc.description.references | Benajes, J., Molina, S., García, A., Monsalve-Serrano, J., & Durrett, R. (2014). Conceptual model description of the double injection strategy applied to the gasoline partially premixed compression ignition combustion concept with spark assistance. Applied Energy, 129, 1-9. doi:10.1016/j.apenergy.2014.04.093 | es_ES |
dc.description.references | Benajes, J., Molina, S., García, A., Monsalve-Serrano, J., & Durrett, R. (2014). Performance and engine-out emissions evaluation of the double injection strategy applied to the gasoline partially premixed compression ignition spark assisted combustion concept. Applied Energy, 134, 90-101. doi:10.1016/j.apenergy.2014.08.008 | es_ES |
dc.description.references | Park, S. H., Youn, I. M., Lim, Y., & Lee, C. S. (2013). Influence of the mixture of gasoline and diesel fuels on droplet atomization, combustion, and exhaust emission characteristics in a compression ignition engine. Fuel Processing Technology, 106, 392-401. doi:10.1016/j.fuproc.2012.09.004 | es_ES |
dc.description.references | Bessonette, P. W., Schleyer, C. H., Duffy, K. P., Hardy, W. L., & Liechty, M. P. (2007). Effects of Fuel Property Changes on Heavy-Duty HCCI Combustion. SAE Technical Paper Series. doi:10.4271/2007-01-0191 | es_ES |
dc.description.references | Inagaki, K., Fuyuto, T., Nishikawa, K., Nakakita, K., & Sakata, I. (2006). Dual-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability. SAE Technical Paper Series. doi:10.4271/2006-01-0028 | es_ES |
dc.description.references | Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2011). Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. International Journal of Engine Research, 12(3), 209-226. doi:10.1177/1468087411401548 | es_ES |
dc.description.references | Dempsey, A. B., Das Adhikary, B., Viswanathan, S., & Reitz, R. D. (2012). Reactivity Controlled Compression Ignition Using Premixed Hydrated Ethanol and Direct Injection Diesel. Journal of Engineering for Gas Turbines and Power, 134(8). doi:10.1115/1.4006703 | es_ES |
dc.description.references | Benajes, J., Molina, S., García, A., Belarte, E., & Vanvolsem, M. (2014). An investigation on RCCI combustion in a heavy duty diesel engine using in-cylinder blending of diesel and gasoline fuels. Applied Thermal Engineering, 63(1), 66-76. doi:10.1016/j.applthermaleng.2013.10.052 | es_ES |
dc.description.references | Hanson, R. M., Kokjohn, S. L., Splitter, D. A., & Reitz, R. D. (2010). An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine. SAE International Journal of Engines, 3(1), 700-716. doi:10.4271/2010-01-0864 | es_ES |
dc.description.references | Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel, 159, 952-961. doi:10.1016/j.fuel.2015.07.064 | es_ES |
dc.description.references | Ma, S., Zheng, Z., Liu, H., Zhang, Q., & Yao, M. (2013). Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion. Applied Energy, 109, 202-212. doi:10.1016/j.apenergy.2013.04.012 | es_ES |
dc.description.references | Reitz, R. D., & Duraisamy, G. (2015). Review of high efficiency and clean reactivity controlled compression ignition (RCCI) combustion in internal combustion engines. Progress in Energy and Combustion Science, 46, 12-71. doi:10.1016/j.pecs.2014.05.003 | es_ES |
dc.description.references | Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005 | es_ES |
dc.description.references | Lapuerta, M., Ballesteros, R., & Agudelo, J. R. (2006). Effect of the gas state equation on the thermodynamic diagnostic of diesel combustion. Applied Thermal Engineering, 26(14-15), 1492-1499. doi:10.1016/j.applthermaleng.2006.01.001 | es_ES |
dc.description.references | Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1 | es_ES |
dc.description.references | Woschni, G. (1967). A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine. SAE Technical Paper Series. doi:10.4271/670931 | es_ES |
dc.description.references | Payri, F., Margot, X., Gil, A., & Martin, J. (2005). Computational Study of Heat Transfer to the Walls of a DI Diesel Engine. SAE Technical Paper Series. doi:10.4271/2005-01-0210 | es_ES |
dc.description.references | Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021 | es_ES |
dc.description.references | Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665 | es_ES |
dc.description.references | Cheng, A. S. (Ed), Upatnieks, A., & Mueller, C. J. (2007). Investigation of Fuel Effects on Dilute, Mixing-Controlled Combustion in an Optical Direct-Injection Diesel Engine. Energy & Fuels, 21(4), 1989-2002. doi:10.1021/ef0606456 | es_ES |
dc.description.references | Kono, M., Basaki, M., Ito, M., Hashizume, T., Ishiyama, S., & Inagaki, K. (2012). Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine. SAE International Journal of Engines, 5(2), 504-515. doi:10.4271/2012-01-0689 | es_ES |
dc.description.references | Splitter, D., Wissink, M., Kokjohn, S., & Reitz, R. D. (2012). Effect of Compression Ratio and Piston Geometry on RCCI Load Limits and Efficiency. SAE Technical Paper Series. doi:10.4271/2012-01-0383 | es_ES |
dc.description.references | Hanson, R., Curran, S., Wagner, R., Kokjohn, S., Splitter, D., & Reitz, R. D. (2012). Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine. SAE International Journal of Engines, 5(2), 286-299. doi:10.4271/2012-01-0380 | es_ES |
dc.description.references | Tutak, W. (2014). Bioethanol E85 as a fuel for dual fuel diesel engine. Energy Conversion and Management, 86, 39-48. doi:10.1016/j.enconman.2014.05.016 | es_ES |
dc.description.references | Desantes, J. M., Lopez, J. J., Garcia, J. M., & Pastor, J. M. (2007). EVAPORATIVE DIESEL SPRAY MODELING. Atomization and Sprays, 17(3), 193-231. doi:10.1615/atomizspr.v17.i3.10 | es_ES |
dc.description.references | Desantes, J. M., Arregle, J., Lopez, J. J., & Cronhjort, A. (2006). SCALING LAWS FOR FREE TURBULENT GAS JETS AND DIESEL-LIKE SPRAYS. Atomization and Sprays, 16(4), 443-474. doi:10.1615/atomizspr.v16.i4.60 | es_ES |