- -

Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming

Mostrar el registro completo del ítem

Cambra-Baseca, C.; Sendra, S.; Lloret, J.; Lacuesta, R. (2018). Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming. Sensors. 18(5):1-16. https://doi.org/10.3390/s18051333

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149455

Ficheros en el ítem

Metadatos del ítem

Título: Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming
Autor: Cambra-Baseca, Carlos Sendra, Sandra Lloret, Jaime Lacuesta, Raquel
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] Improving the sustainability in agriculture is nowadays an important challenge. The automation of irrigation processes via low-cost sensors can to spread technological advances in a sector very influenced by economical ...[+]
Palabras clave: Wireless sensor networks (WSNs) , Internet of Things (IoT) , Hydroponic agriculture , Potential of hydrogen (pH) sensor , Smart farming , Precision agriculture
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s18051333
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/s18051333
Código del Proyecto:
info:eu-repo/grantAgreement/EC//ERANETMED3-227 SMARTWATIR/EU/
Agradecimientos:
The research leading to these results has received funding from "la Caixa" Foundation and Triptolemos Foundation. This work has also been partially supported by European Union through the ERANETMED (Euromediterranean ...[+]
Tipo: Artículo

References

Salley, S. W., Sleezer, R. O., Bergstrom, R. M., Martin, P. H., & Kelly, E. F. (2016). A long-term analysis of the historical dry boundary for the Great Plains of North America: Implications of climatic variability and climatic change on temporal and spatial patterns in soil moisture. Geoderma, 274, 104-113. doi:10.1016/j.geoderma.2016.03.020

Yang, H., Du, T., Qiu, R., Chen, J., Wang, F., Li, Y., … Kang, S. (2017). Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agricultural Water Management, 179, 193-204. doi:10.1016/j.agwat.2016.05.029

Ferentinos, K. P., Katsoulas, N., Tzounis, A., Bartzanas, T., & Kittas, C. (2017). Wireless sensor networks for greenhouse climate and plant condition assessment. Biosystems Engineering, 153, 70-81. doi:10.1016/j.biosystemseng.2016.11.005 [+]
Salley, S. W., Sleezer, R. O., Bergstrom, R. M., Martin, P. H., & Kelly, E. F. (2016). A long-term analysis of the historical dry boundary for the Great Plains of North America: Implications of climatic variability and climatic change on temporal and spatial patterns in soil moisture. Geoderma, 274, 104-113. doi:10.1016/j.geoderma.2016.03.020

Yang, H., Du, T., Qiu, R., Chen, J., Wang, F., Li, Y., … Kang, S. (2017). Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agricultural Water Management, 179, 193-204. doi:10.1016/j.agwat.2016.05.029

Ferentinos, K. P., Katsoulas, N., Tzounis, A., Bartzanas, T., & Kittas, C. (2017). Wireless sensor networks for greenhouse climate and plant condition assessment. Biosystems Engineering, 153, 70-81. doi:10.1016/j.biosystemseng.2016.11.005

Ibayashi, H., Kaneda, Y., Imahara, J., Oishi, N., Kuroda, M., & Mineno, H. (2016). A Reliable Wireless Control System for Tomato Hydroponics. Sensors, 16(5), 644. doi:10.3390/s16050644

Ntinas, G. K., Neumair, M., Tsadilas, C. D., & Meyer, J. (2017). Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions. Journal of Cleaner Production, 142, 3617-3626. doi:10.1016/j.jclepro.2016.10.106

Europapress Newshttp://www.europapress.es/andalucia/almeria-00350/noticia-superficie-invernaderos-crece-105-ultimos-cuatro-anos-llegar-29596-hectareas-20150213102204.html

Treftz, C., & Omaye, S. T. (2016). Hydroponics: potential for augmenting sustainable food production in non-arable regions. Nutrition & Food Science, 46(5), 672-684. doi:10.1108/nfs-10-2015-0118

De Anda, J., & Shear, H. (2017). Potential of Vertical Hydroponic Agriculture in Mexico. Sustainability, 9(1), 140. doi:10.3390/su9010140

Croft, M. M., Hallett, S. G., & Marshall, M. I. (2017). Hydroponic production of vegetable Amaranth (Amaranthus cruentus) for improving nutritional security and economic viability in Kenya. Renewable Agriculture and Food Systems, 32(6), 552-561. doi:10.1017/s1742170516000478

Ferrarezi, R. S., & Testezlaf, R. (2014). Performance of wick irrigation system using self-compensating troughs with substrates for lettuce production. Journal of Plant Nutrition, 39(1), 147-161. doi:10.1080/01904167.2014.983127

Understanding Irrigation Water Test Results and Their Implications on Nursery and Greenhouse Crophttps://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1160&context=anr_reports

Kim, H.-J., Kim, D.-W., Kim, W. K., Cho, W.-J., & Kang, C. I. (2017). PVC membrane-based portable ion analyzer for hydroponic and water monitoring. Computers and Electronics in Agriculture, 140, 374-385. doi:10.1016/j.compag.2017.06.015

(2017). Remote Sensing for Irrigation of Horticultural Crops. Horticulturae, 3(2), 40. doi:10.3390/horticulturae3020040

Suárez-Albela, M., Fraga-Lamas, P., Fernández-Caramés, T., Dapena, A., & González-López, M. (2016). Home Automation System Based on Intelligent Transducer Enablers. Sensors, 16(10), 1595. doi:10.3390/s16101595

Zhang, Q., Yang, X., Zhou, Y., Wang, L., & Guo, X. (2007). A wireless solution for greenhouse monitoring and control system based on ZigBee technology. Journal of Zhejiang University-SCIENCE A, 8(10), 1584-1587. doi:10.1631/jzus.2007.a1584

Gill, S. S., Chana, I., & Buyya, R. (2017). IoT Based Agriculture as a Cloud and Big Data Service. Journal of Organizational and End User Computing, 29(4), 1-23. doi:10.4018/joeuc.2017100101

Nordic Semiconductor, RF Specialist in Ultra-Low Power Wireless Communicationshttp://www.nordicsemi.com/eng/Products/2.4GHzRF/nRF24L01

Pawlowski, A., Guzman, J., Rodríguez, F., Berenguel, M., Sánchez, J., & Dormido, S. (2009). Simulation of Greenhouse Climate Monitoring and Control with Wireless Sensor Network and Event-Based Control. Sensors, 9(1), 232-252. doi:10.3390/s90100232

Li, X., Cheng, X., Yan, K., & Gong, P. (2010). A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network. Sensors, 10(10), 8963-8980. doi:10.3390/s101008963

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem