- -

Singlet oxygen production and in vitro phototoxicity studies on fenofibrate, mycophenolate mofetil, trifusal, and their active metabolites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Singlet oxygen production and in vitro phototoxicity studies on fenofibrate, mycophenolate mofetil, trifusal, and their active metabolites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Molins-Molina, Oscar es_ES
dc.contributor.author Bresolí-Obach, Roger es_ES
dc.contributor.author García-Laínez, G. es_ES
dc.contributor.author Andreu Ros, María Inmaculada es_ES
dc.contributor.author Nonell, Santiago es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.contributor.author Jiménez Molero, María Consuelo es_ES
dc.date.accessioned 2020-09-09T03:31:23Z
dc.date.available 2020-09-09T03:31:23Z
dc.date.issued 2017-09 es_ES
dc.identifier.issn 0894-3230 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149637
dc.description "This is the peer reviewed version of the following article: Molins-Molina, Oscar, Roger Bresolí-Obach, Guillermo Garcia-Lainez, Inmaculada Andreu, Santi Nonell, Miguel A. Miranda, and M. Consuelo Jiménez. 2017. Singlet Oxygen Production and in Vitro Phototoxicity Studies on Fenofibrate, Mycophenolate Mofetil, Trifusal, and Their Active Metabolites. Journal of Physical Organic Chemistry 30 (9). Wiley: e3722. doi:10.1002/poc.3722, which has been published in final form at https://doi.org/10.1002/poc.3722. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] Singlet oxygen photosensitization (studied by time-resolved near-infrared emission spectroscopy) and in vitro phototoxicity (by means of the 3T3 neutral red uptake assay) have been investigated for the prodrugs fenofibrate (FFB), mycophenolate mofetil (MMP), and trifusal (TFS) as well as for their active metabolites fenofibric acid (FFA), mycophenolic acid (MPA), and 2-hydroxy-4-(trifluoromethyl) benzoic acid (HTB). The results show that FFB and its active metabolite FFA generate O-1(2) with a quantum yield in the range 0.30 to 0.40 and show a photo-irritation factor (PIF) higher than 40. By contrast, MMP/MPA and TFS/HTB are not photoactive in the used assays. These results correlate well with the previously reported in vivo phototoxicity in treated patients. es_ES
dc.description.sponsorship This work has been supported by grants CTQ-2013-47872C2-1-P, CTQ2016-78875-P, CTQ2013-48767-C3-1-R, CTQ2016-78454-C2-1-R, CTQ2015-71896-REDT, FIS PI16/01877, and BES-2014-069404 ( predoctoral fellowship to O. M.- M.) from MINECO. R. B.- O. thanks the European Social Funds and the SUR del DEC de la Generalitat de Catalunya for a predoctoral fellowship (2017 FI_B2 00140). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of Physical Organic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Neutral red uptake assay es_ES
dc.subject Photosensitization es_ES
dc.subject Phototoxicity es_ES
dc.subject Singlet oxygen time-resolved near-infrared phosphorescence es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Singlet oxygen production and in vitro phototoxicity studies on fenofibrate, mycophenolate mofetil, trifusal, and their active metabolites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/poc.3722 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-78875-P/ES/CONTROL SUPRAMOLECULAR DE LA FOTORREACTIVIDAD EN MEDIOS MICROHETEROGENOS BASADOS EN AMINOACIDOS: GELES MOLECULARES Y PROTEINAS TRANSPORTADORAS COMO NANORREACTORES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2013-47872-C2-1-P/ES/METABOLITOS FOTOACTIVOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2013-48767-C3-1-R/ES/DESARROLLO DE DISPOSITIVOS NANOESTRUCTURADOS COMO PLATAFORMAS MULTIMODALES FOTOTERAPEUTICAS. 1. QUIMICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-78454-C2-1-R/ES/ANTICUERPOS MONOCLONALES MODIFICADOS CON AGENTES FOTO- Y QUIMIOTERAPEUTICOS: CONJUGADOS TERNARIOS ACTIVABLES CON LUZ ROJA%2FNIR PARA USO TERAPEUTICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya//2017 FI_B2 00140/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2014-069404/ES/BES-2014-069404/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-71896-REDT/ES/RED DE FOTOQUIMICA BIOLOGICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI16%2F01877/ES/Estrategia integrada de fotodiagnóstico combinando evaluación clínica, ensayos biológicos y estudios mecanísticos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Molins-Molina, O.; Bresolí-Obach, R.; García-Laínez, G.; Andreu Ros, MI.; Nonell, S.; Miranda Alonso, MÁ.; Jiménez Molero, MC. (2017). Singlet oxygen production and in vitro phototoxicity studies on fenofibrate, mycophenolate mofetil, trifusal, and their active metabolites. Journal of Physical Organic Chemistry. 30(9):1-7. https://doi.org/10.1002/poc.3722 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/poc.3722 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 30 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\342628 es_ES
dc.contributor.funder European Social Fund es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Nassar, A. F. (Ed.). (2010). Biotransformation and Metabolite Elucidation of Xenobiotics. doi:10.1002/9780470890387 es_ES
dc.description.references Iyanagi, T. (2007). Molecular Mechanism of Phase I and Phase II Drug‐Metabolizing Enzymes: Implications for Detoxification. International Review of Cytology, 35-112. doi:10.1016/s0074-7696(06)60002-8 es_ES
dc.description.references Testa, B., Pedretti, A., & Vistoli, G. (2012). Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discovery Today, 17(11-12), 549-560. doi:10.1016/j.drudis.2012.01.017 es_ES
dc.description.references Foote, C. S. (1991). DEFINITION OF TYPE I and TYPE II PHOTOSENSITIZED OXIDATION. Photochemistry and Photobiology, 54(5), 659-659. doi:10.1111/j.1751-1097.1991.tb02071.x es_ES
dc.description.references Palumbo, F., Garcia-Lainez, G., Limones-Herrero, D., Coloma, M. D., Escobar, J., Jiménez, M. C., … Andreu, I. (2016). Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites. Toxicology and Applied Pharmacology, 313, 131-137. doi:10.1016/j.taap.2016.10.024 es_ES
dc.description.references Ljunggren, B., & Möller, H. (1977). Phenothiazine Phototoxicity: an Experimental Study on Chlorpromazine and its Metabolites. Journal of Investigative Dermatology, 68(5), 313-317. doi:10.1111/1523-1747.ep12494582 es_ES
dc.description.references Filippatos, T., & Milionis, H. J. (2008). Treatment of hyperlipidaemia with fenofibrate and related fibrates. Expert Opinion on Investigational Drugs, 17(10), 1599-1614. doi:10.1517/13543784.17.10.1599 es_ES
dc.description.references Mele, T. S., & Halloran, P. F. (2000). The use of mycophenolate mofetil in transplant recipients. Immunopharmacology, 47(2-3), 215-245. doi:10.1016/s0162-3109(00)00190-9 es_ES
dc.description.references Plaza, L., López-Bescós, L., Martín-Jadraque, L. M., Alegrla, E., Cruz-Fernández, J. M., Velasco, J., … Zurita, A. F. (1993). Protective Effect of Triflusal against Acute Myocardial Infarction in Patients with Unstable Angina: Results of a Spanish Multicenter Trial. Cardiology, 82(6), 388-398. doi:10.1159/000175892 es_ES
dc.description.references De La Cruz, J. P., Mata, J. M., & De La Cuesta, F. S. (1992). Triflusal vs aspirin on the inhibition of human platelet and vascular cyclooxygenase. General Pharmacology: The Vascular System, 23(2), 297-300. doi:10.1016/0306-3623(92)90027-h es_ES
dc.description.references Van Gelder, T., & Hesselink, D. A. (2015). Mycophenolate revisited. Transplant International, 28(5), 508-515. doi:10.1111/tri.12554 es_ES
dc.description.references Kuypers, D. R. J., Meur, Y. L., Cantarovich, M., Tredger, M. J., Tett, S. E., Cattaneo, D., … Gelder, T. van. (2010). Consensus Report on Therapeutic Drug Monitoring of Mycophenolic Acid in Solid Organ Transplantation. Clinical Journal of the American Society of Nephrology, 5(2), 341-358. doi:10.2215/cjn.07111009 es_ES
dc.description.references Ramis, J., Mis, R., Forn, J., Torrent, J., Gorina, E., & Jané, F. (1991). Pharmacokinetics of triflusal and its main metabolite HTB in healthy subjects following a single oral dose. European Journal of Drug Metabolism and Pharmacokinetics, 16(4), 269-273. doi:10.1007/bf03189971 es_ES
dc.description.references Darmanyan, A. P., & Foote, C. S. (1993). Solvent effects on singlet oxygen yield from n,.pi.* and .pi.,.pi.* triplet carbonyl compounds. The Journal of Physical Chemistry, 97(19), 5032-5035. doi:10.1021/j100121a029 es_ES
dc.description.references Wilkinson, F., Helman, W. P., & Ross, A. B. (1995). Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation. Journal of Physical and Chemical Reference Data, 24(2), 663-677. doi:10.1063/1.555965 es_ES
dc.description.references Thomas, M. J., & Foote, C. S. (1978). CHEMISTRY OF SINGLET OXYGEN—XXVI. PHOTOOXYGENATION OF PHENOLSy. Photochemistry and Photobiology, 27(6), 683-693. doi:10.1111/j.1751-1097.1978.tb07665.x es_ES
dc.description.references Afshari, E., & Schmidt, R. (1991). Isotope-dependent quenching of singlet molecular oxygen (1Δg) by ground-state oxygen in several perhalogenated solvents. Chemical Physics Letters, 184(1-3), 128-132. doi:10.1016/0009-2614(91)87176-c es_ES
dc.description.references Boscá, F., & Miranda, M. A. (1999). A Laser Flash Photolysis Study on Fenofibric Acid. Photochemistry and Photobiology, 70(6), 853-857. doi:10.1111/j.1751-1097.1999.tb08293.x es_ES
dc.description.references OECD 2004 In vitro th es_ES
dc.description.references Serrano, G., Fortea, J. M., Latasa, J. M., Millan, F., Janes, C., Bosca, F., & Miranda, M. A. (1992). Photosensitivity induced by fibric acid derivatives and its relation to photocontact dermatitis to ketoprofen. Journal of the American Academy of Dermatology, 27(2), 204-208. doi:10.1016/0190-9622(92)70171-b es_ES
dc.description.references Cosa, G., Purohit, S., Scaiano, J. C., Boscá, F., & Miranda, M. A. (2002). A Laser Flash Photolysis Study of Fenofibric Acid in Aqueous Buffered Media: Unexpected Triplet State Inversion in a Derivative of 4-Alkoxybenzophenone¶. Photochemistry and Photobiology, 75(3), 193. doi:10.1562/0031-8655(2002)075<0193:alfpso>2.0.co;2 es_ES
dc.description.references Vayá, I., Andreu, I., Monje, V. T., Jiménez, M. C., & Miranda, M. A. (2015). Mechanistic Studies on the Photoallergy Mediated by Fenofibric Acid: Photoreactivity with Serum Albumins. Chemical Research in Toxicology, 29(1), 40-46. doi:10.1021/acs.chemrestox.5b00357 es_ES
dc.description.references Miranda, M. A., Boscaa, F., Vargas, F., & Canudas, N. (1994). PHOTOSENSITIZATION BY FENOFIBRATE. II. In vitro PHOTOTOXICITY OF THE MAJOR METABOLITES. Photochemistry and Photobiology, 59(2), 171-174. doi:10.1111/j.1751-1097.1994.tb05018.x es_ES
dc.description.references Montanaro, S., Lhiaubet-Vallet, V., Jiménez, M. C., Blanca, M., & Miranda, M. A. (2009). Photonucleophilic Addition of the ε-Amino Group of Lysine to a Triflusal Metabolite as a Mechanistic Key to Photoallergy Mediated by the Parent Drug. ChemMedChem, 4(7), 1196-1202. doi:10.1002/cmdc.200900066 es_ES
dc.description.references Nuin, E., Pérez-Sala, D., Lhiaubet-Vallet, V., Andreu, I., & Miranda, M. A. (2016). Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques. Frontiers in Pharmacology, 7. doi:10.3389/fphar.2016.00277 es_ES
dc.description.references Jiménez-Banzo, A., Ragàs, X., Kapusta, P., & Nonell, S. (2008). Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection. Photochemical & Photobiological Sciences, 7(9), 1003. doi:10.1039/b804333g es_ES
dc.description.references Oliveros, E., Suardi-Murasecco, P., Aminian-Saghafi, T., Braun, A. M., & Hansen, H.-J. (1991). 1H-Phenalen-1-one: Photophysical Properties and Singlet-Oxygen Production. Helvetica Chimica Acta, 74(1), 79-90. doi:10.1002/hlca.19910740110 es_ES
dc.description.references Schmidt, R., Tanielian, C., Dunsbach, R., & Wolff, C. (1994). Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O2(1Δg) sensitization. Journal of Photochemistry and Photobiology A: Chemistry, 79(1-2), 11-17. doi:10.1016/1010-6030(93)03746-4 es_ES
dc.description.references Martí, C., Jürgens, O., Cuenca, O., Casals, M., & Nonell, S. (1996). Aromatic ketones as standards for singlet molecular oxygen photosensitization. Time-resolved photoacoustic and near-IR emission studies. Journal of Photochemistry and Photobiology A: Chemistry, 97(1-2), 11-18. doi:10.1016/1010-6030(96)04321-3 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem