Nassar, A. F. (Ed.). (2010). Biotransformation and Metabolite Elucidation of Xenobiotics. doi:10.1002/9780470890387
Iyanagi, T. (2007). Molecular Mechanism of Phase I and Phase II Drug‐Metabolizing Enzymes: Implications for Detoxification. International Review of Cytology, 35-112. doi:10.1016/s0074-7696(06)60002-8
Testa, B., Pedretti, A., & Vistoli, G. (2012). Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discovery Today, 17(11-12), 549-560. doi:10.1016/j.drudis.2012.01.017
[+]
Nassar, A. F. (Ed.). (2010). Biotransformation and Metabolite Elucidation of Xenobiotics. doi:10.1002/9780470890387
Iyanagi, T. (2007). Molecular Mechanism of Phase I and Phase II Drug‐Metabolizing Enzymes: Implications for Detoxification. International Review of Cytology, 35-112. doi:10.1016/s0074-7696(06)60002-8
Testa, B., Pedretti, A., & Vistoli, G. (2012). Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discovery Today, 17(11-12), 549-560. doi:10.1016/j.drudis.2012.01.017
Foote, C. S. (1991). DEFINITION OF TYPE I and TYPE II PHOTOSENSITIZED OXIDATION. Photochemistry and Photobiology, 54(5), 659-659. doi:10.1111/j.1751-1097.1991.tb02071.x
Palumbo, F., Garcia-Lainez, G., Limones-Herrero, D., Coloma, M. D., Escobar, J., Jiménez, M. C., … Andreu, I. (2016). Enhanced photo(geno)toxicity of demethylated chlorpromazine metabolites. Toxicology and Applied Pharmacology, 313, 131-137. doi:10.1016/j.taap.2016.10.024
Ljunggren, B., & Möller, H. (1977). Phenothiazine Phototoxicity: an Experimental Study on Chlorpromazine and its Metabolites. Journal of Investigative Dermatology, 68(5), 313-317. doi:10.1111/1523-1747.ep12494582
Filippatos, T., & Milionis, H. J. (2008). Treatment of hyperlipidaemia with fenofibrate and related fibrates. Expert Opinion on Investigational Drugs, 17(10), 1599-1614. doi:10.1517/13543784.17.10.1599
Mele, T. S., & Halloran, P. F. (2000). The use of mycophenolate mofetil in transplant recipients. Immunopharmacology, 47(2-3), 215-245. doi:10.1016/s0162-3109(00)00190-9
Plaza, L., López-Bescós, L., Martín-Jadraque, L. M., Alegrla, E., Cruz-Fernández, J. M., Velasco, J., … Zurita, A. F. (1993). Protective Effect of Triflusal against Acute Myocardial Infarction in Patients with Unstable Angina: Results of a Spanish Multicenter Trial. Cardiology, 82(6), 388-398. doi:10.1159/000175892
De La Cruz, J. P., Mata, J. M., & De La Cuesta, F. S. (1992). Triflusal vs aspirin on the inhibition of human platelet and vascular cyclooxygenase. General Pharmacology: The Vascular System, 23(2), 297-300. doi:10.1016/0306-3623(92)90027-h
Van Gelder, T., & Hesselink, D. A. (2015). Mycophenolate revisited. Transplant International, 28(5), 508-515. doi:10.1111/tri.12554
Kuypers, D. R. J., Meur, Y. L., Cantarovich, M., Tredger, M. J., Tett, S. E., Cattaneo, D., … Gelder, T. van. (2010). Consensus Report on Therapeutic Drug Monitoring of Mycophenolic Acid in Solid Organ Transplantation. Clinical Journal of the American Society of Nephrology, 5(2), 341-358. doi:10.2215/cjn.07111009
Ramis, J., Mis, R., Forn, J., Torrent, J., Gorina, E., & Jané, F. (1991). Pharmacokinetics of triflusal and its main metabolite HTB in healthy subjects following a single oral dose. European Journal of Drug Metabolism and Pharmacokinetics, 16(4), 269-273. doi:10.1007/bf03189971
Darmanyan, A. P., & Foote, C. S. (1993). Solvent effects on singlet oxygen yield from n,.pi.* and .pi.,.pi.* triplet carbonyl compounds. The Journal of Physical Chemistry, 97(19), 5032-5035. doi:10.1021/j100121a029
Wilkinson, F., Helman, W. P., & Ross, A. B. (1995). Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation. Journal of Physical and Chemical Reference Data, 24(2), 663-677. doi:10.1063/1.555965
Thomas, M. J., & Foote, C. S. (1978). CHEMISTRY OF SINGLET OXYGEN—XXVI. PHOTOOXYGENATION OF PHENOLSy. Photochemistry and Photobiology, 27(6), 683-693. doi:10.1111/j.1751-1097.1978.tb07665.x
Afshari, E., & Schmidt, R. (1991). Isotope-dependent quenching of singlet molecular oxygen (1Δg) by ground-state oxygen in several perhalogenated solvents. Chemical Physics Letters, 184(1-3), 128-132. doi:10.1016/0009-2614(91)87176-c
Boscá, F., & Miranda, M. A. (1999). A Laser Flash Photolysis Study on Fenofibric Acid. Photochemistry and Photobiology, 70(6), 853-857. doi:10.1111/j.1751-1097.1999.tb08293.x
OECD 2004 In vitro th
Serrano, G., Fortea, J. M., Latasa, J. M., Millan, F., Janes, C., Bosca, F., & Miranda, M. A. (1992). Photosensitivity induced by fibric acid derivatives and its relation to photocontact dermatitis to ketoprofen. Journal of the American Academy of Dermatology, 27(2), 204-208. doi:10.1016/0190-9622(92)70171-b
Cosa, G., Purohit, S., Scaiano, J. C., Boscá, F., & Miranda, M. A. (2002). A Laser Flash Photolysis Study of Fenofibric Acid in Aqueous Buffered Media: Unexpected Triplet State Inversion in a Derivative of 4-Alkoxybenzophenone¶. Photochemistry and Photobiology, 75(3), 193. doi:10.1562/0031-8655(2002)075<0193:alfpso>2.0.co;2
Vayá, I., Andreu, I., Monje, V. T., Jiménez, M. C., & Miranda, M. A. (2015). Mechanistic Studies on the Photoallergy Mediated by Fenofibric Acid: Photoreactivity with Serum Albumins. Chemical Research in Toxicology, 29(1), 40-46. doi:10.1021/acs.chemrestox.5b00357
Miranda, M. A., Boscaa, F., Vargas, F., & Canudas, N. (1994). PHOTOSENSITIZATION BY FENOFIBRATE. II. In vitro PHOTOTOXICITY OF THE MAJOR METABOLITES. Photochemistry and Photobiology, 59(2), 171-174. doi:10.1111/j.1751-1097.1994.tb05018.x
Montanaro, S., Lhiaubet-Vallet, V., Jiménez, M. C., Blanca, M., & Miranda, M. A. (2009). Photonucleophilic Addition of the ε-Amino Group of Lysine to a Triflusal Metabolite as a Mechanistic Key to Photoallergy Mediated by the Parent Drug. ChemMedChem, 4(7), 1196-1202. doi:10.1002/cmdc.200900066
Nuin, E., Pérez-Sala, D., Lhiaubet-Vallet, V., Andreu, I., & Miranda, M. A. (2016). Photosensitivity to Triflusal: Formation of a Photoadduct with Ubiquitin Demonstrated by Photophysical and Proteomic Techniques. Frontiers in Pharmacology, 7. doi:10.3389/fphar.2016.00277
Jiménez-Banzo, A., Ragàs, X., Kapusta, P., & Nonell, S. (2008). Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection. Photochemical & Photobiological Sciences, 7(9), 1003. doi:10.1039/b804333g
Oliveros, E., Suardi-Murasecco, P., Aminian-Saghafi, T., Braun, A. M., & Hansen, H.-J. (1991). 1H-Phenalen-1-one: Photophysical Properties and Singlet-Oxygen Production. Helvetica Chimica Acta, 74(1), 79-90. doi:10.1002/hlca.19910740110
Schmidt, R., Tanielian, C., Dunsbach, R., & Wolff, C. (1994). Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O2(1Δg) sensitization. Journal of Photochemistry and Photobiology A: Chemistry, 79(1-2), 11-17. doi:10.1016/1010-6030(93)03746-4
Martí, C., Jürgens, O., Cuenca, O., Casals, M., & Nonell, S. (1996). Aromatic ketones as standards for singlet molecular oxygen photosensitization. Time-resolved photoacoustic and near-IR emission studies. Journal of Photochemistry and Photobiology A: Chemistry, 97(1-2), 11-18. doi:10.1016/1010-6030(96)04321-3
[-]