Mostrar el registro sencillo del ítem
dc.contributor.author | Pop, O.L. | es_ES |
dc.contributor.author | Dulf, F.V. | es_ES |
dc.contributor.author | Cuibus, L. | es_ES |
dc.contributor.author | Castro Giraldez, Marta | es_ES |
dc.contributor.author | Fito Suñer, Pedro José | es_ES |
dc.contributor.author | Vodnar, D.C. | es_ES |
dc.contributor.author | Coman, C. | es_ES |
dc.contributor.author | Socaciu, C. | es_ES |
dc.contributor.author | Suharoschi, R. | es_ES |
dc.date.accessioned | 2020-09-10T03:31:53Z | |
dc.date.available | 2020-09-10T03:31:53Z | |
dc.date.issued | 2017-11-24 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/149721 | |
dc.description.abstract | [EN] Probiotics are bacteria that can provide health benefits to consumers and are suitable to be added to a variety of foods. In this research, viability of immobilized Lactobacillus casei in alginate with or without sea buckthorn lipid extract were studied during heat treatment and with an in vitro gastrointestinal model. The characterization of the lipid extract was also done using the UV-Vis spectrometry (UV-Vis), high-performance liquid chromatography photodiode array detection method (HPLC-PDA), gas chromatography coupled with mass spectrometry (GS-MS) and Cryo scanning electron microscopy (Cryo-SEM). During heat treatment, the entrapped probiotic cells proved high viability (>6 CFU log/g), even at temperatures above 50 degrees C. The rich in monounsaturated fatty acids sea buckthorn fraction improved the in vitro digestion passage regarding the probiotic viability. The survival of the probiotic cells was 15% higher after 2 h in the acidic medium of the simulated gastric fluid in the sample where L. casei was encapsulated with the sea buckthorn extract compared with the samples where no extract was added. Thus, this approach may be effective for the future development of probiotic-supplemented foods as foods with health welfare for the consumers. | es_ES |
dc.description.sponsorship | This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-1255 and PN-III-P2-2.1-CI-2017-0056. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | International Journal of Molecular Sciences | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Lactobacillus casei | es_ES |
dc.subject | Heat treatment | es_ES |
dc.subject | Gastrointestinal passage | es_ES |
dc.subject | Sea buckthorn | es_ES |
dc.subject | Encapsulation | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Characterization of Sea Buckthorn Extract and its effect on free and encapsulated Lactobacillus casei | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijms18122513 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UEFISCDI//PN-II-RU-TE-2014-4-1255/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UEFISCDI//PN-III-P2-2.1-CI-2017-0056/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Pop, O.; Dulf, F.; Cuibus, L.; Castro Giraldez, M.; Fito Suñer, PJ.; Vodnar, D.; Coman, C.... (2017). Characterization of Sea Buckthorn Extract and its effect on free and encapsulated Lactobacillus casei. International Journal of Molecular Sciences. 18(12):1-15. https://doi.org/10.3390/ijms18122513 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ijms18122513 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 18 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.eissn | 1422-0067 | es_ES |
dc.identifier.pmid | 29186761 | es_ES |
dc.identifier.pmcid | PMC5751116 | es_ES |
dc.relation.pasarela | S\348638 | es_ES |
dc.contributor.funder | Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding, Rumanía | es_ES |
dc.description.references | Coghetto, C. C., Flores, S. H., Brinques, G. B., & Záchia Ayub, M. A. (2016). Viability and alternative uses of a dried powder, microencapsulated Lactobacillus plantarum without the use of cold chain or dairy products. LWT - Food Science and Technology, 71, 54-59. doi:10.1016/j.lwt.2016.03.020 | es_ES |
dc.description.references | Sanders, M. E. (2008). Probiotics: Definition, Sources, Selection, and Uses. Clinical Infectious Diseases, 46(s2), S58-S61. doi:10.1086/523341 | es_ES |
dc.description.references | Butel, M.-J. (2014). Probiotics, gut microbiota and health. Médecine et Maladies Infectieuses, 44(1), 1-8. doi:10.1016/j.medmal.2013.10.002 | es_ES |
dc.description.references | Eckburg, P. B. (2005). Diversity of the Human Intestinal Microbial Flora. Science, 308(5728), 1635-1638. doi:10.1126/science.1110591 | es_ES |
dc.description.references | Berger, R. E. (2005). Lactobacilli for Prevention of Urogenital Infections: A Review. Journal of Urology, 174(1), 165-166. doi:10.1016/s0022-5347(05)60052-3 | es_ES |
dc.description.references | Aguirre, M., & Venema, K. (2015). The art of targeting gut microbiota for tackling human obesity. Genes & Nutrition, 10(4). doi:10.1007/s12263-015-0472-4 | es_ES |
dc.description.references | Ivey, K. L., Hodgson, J. M., Kerr, D. A., Thompson, P. L., Stojceski, B., & Prince, R. L. (2015). The effect of yoghurt and its probiotics on blood pressure and serum lipid profile; a randomised controlled trial. Nutrition, Metabolism and Cardiovascular Diseases, 25(1), 46-51. doi:10.1016/j.numecd.2014.07.012 | es_ES |
dc.description.references | Chávez-Tapia, N. C., González-Rodríguez, L., Jeong, M., López-Ramírez, Y., Barbero-Becerra, V., Juárez-Hernández, E., … Uribe, M. (2015). Current evidence on the use of probiotics in liver diseases. Journal of Functional Foods, 17, 137-151. doi:10.1016/j.jff.2015.05.009 | es_ES |
dc.description.references | Daliri, E. B.-M., & Lee, B. H. (2015). New perspectives on probiotics in health and disease. Food Science and Human Wellness, 4(2), 56-65. doi:10.1016/j.fshw.2015.06.002 | es_ES |
dc.description.references | Amara, A. A., & Shibl, A. (2015). Role of Probiotics in health improvement, infection control and disease treatment and management. Saudi Pharmaceutical Journal, 23(2), 107-114. doi:10.1016/j.jsps.2013.07.001 | es_ES |
dc.description.references | Tian, J., Liu, C., Xiang, H., Zheng, X., Peng, G., Zhang, X., … Qin, X. (2015). Investigation on the antidepressant effect of sea buckthorn seed oil through the GC-MS-based metabolomics approach coupled with multivariate analysis. Food & Function, 6(11), 3585-3592. doi:10.1039/c5fo00695c | es_ES |
dc.description.references | Zeb, A., & Ullah, S. (2015). Sea buckthorn seed oil protects against the oxidative stress produced by thermally oxidized lipids. Food Chemistry, 186, 6-12. doi:10.1016/j.foodchem.2015.03.053 | es_ES |
dc.description.references | Cao, H., Wang, J., Dong, X., Han, Y., Ma, Q., Ding, Y., … Deng, X. (2015). Carotenoid accumulation affects redox status, starch metabolism, and flavonoid/anthocyanin accumulation in citrus. BMC Plant Biology, 15(1), 27. doi:10.1186/s12870-015-0426-4 | es_ES |
dc.description.references | Monego, D. L., da Rosa, M. B., & do Nascimento, P. C. (2017). Applications of computational chemistry to the study of the antiradical activity of carotenoids: A review. Food Chemistry, 217, 37-44. doi:10.1016/j.foodchem.2016.08.073 | es_ES |
dc.description.references | Gunenc, A., Khoury, C., Legault, C., Mirrashed, H., Rijke, J., & Hosseinian, F. (2016). Seabuckthorn as a novel prebiotic source improves probiotic viability in yogurt. LWT - Food Science and Technology, 66, 490-495. doi:10.1016/j.lwt.2015.10.061 | es_ES |
dc.description.references | Kumari, A., Angmo, K., Monika, & Bhalla, T. C. (2016). Probiotic attributes of indigenous Lactobacillus spp. isolated from traditional fermented foods and beverages of north-western Himalayas using in vitro screening and principal component analysis. Journal of Food Science and Technology, 53(5), 2463-2475. doi:10.1007/s13197-016-2231-y | es_ES |
dc.description.references | De Prisco, A., Maresca, D., Ongeng, D., & Mauriello, G. (2015). Microencapsulation by vibrating technology of the probiotic strain Lactobacillus reuteri DSM 17938 to enhance its survival in foods and in gastrointestinal environment. LWT - Food Science and Technology, 61(2), 452-462. doi:10.1016/j.lwt.2014.12.011 | es_ES |
dc.description.references | Ranadheera, C. S., Evans, C. A., Adams, M. C., & Baines, S. K. (2012). In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat’s milk ice cream and yogurt. Food Research International, 49(2), 619-625. doi:10.1016/j.foodres.2012.09.007 | es_ES |
dc.description.references | Belščak-Cvitanović, A., Bušić, A., Barišić, L., Vrsaljko, D., Karlović, S., Špoljarić, I., … Komes, D. (2016). Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocolloids, 57, 139-152. doi:10.1016/j.foodhyd.2016.01.020 | es_ES |
dc.description.references | Coghetto, C. C., Brinques, G. B., Siqueira, N. M., Pletsch, J., Soares, R. M. D., & Ayub, M. A. Z. (2016). Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. Journal of Functional Foods, 24, 316-326. doi:10.1016/j.jff.2016.03.036 | es_ES |
dc.description.references | Dulf, F., Andrei, S., Bunea, A., & Socaciu, C. (2012). Fatty acid and phytosterol contents of some Romanian wild and cultivated berry pomaces. Chemical Papers, 66(10). doi:10.2478/s11696-012-0156-0 | es_ES |
dc.description.references | Simopoulos, A. . (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy, 56(8), 365-379. doi:10.1016/s0753-3322(02)00253-6 | es_ES |
dc.description.references | Ho, L. S., Nair, A., Mohd Yusof, H., Kulaveerasingam, H., & Jangi, M. S. (2014). Morphometry of Lipid Bodies in Embryo, Kernel and Mesocarp of Oil Palm: Its Relationship to Yield. American Journal of Plant Sciences, 05(09), 1163-1173. doi:10.4236/ajps.2014.59129 | es_ES |
dc.description.references | Chávarri, M., Marañón, I., Ares, R., Ibáñez, F. C., Marzo, F., & Villarán, M. del C. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology, 142(1-2), 185-189. doi:10.1016/j.ijfoodmicro.2010.06.022 | es_ES |
dc.description.references | Pop, O. L., Brandau, T., Schwinn, J., Vodnar, D. C., & Socaciu, C. (2014). The influence of different polymers on viability of Bifidobacterium lactis 300b during encapsulation, freeze-drying and storage. Journal of Food Science and Technology, 52(7), 4146-4155. doi:10.1007/s13197-014-1441-4 | es_ES |
dc.description.references | Mapelli-Brahm, P., Corte-Real, J., Meléndez-Martínez, A. J., & Bohn, T. (2017). Bioaccessibility of phytoene and phytofluene is superior to other carotenoids from selected fruit and vegetable juices. Food Chemistry, 229, 304-311. doi:10.1016/j.foodchem.2017.02.074 | es_ES |
dc.description.references | Martins, N., & Ferreira, I. C. F. R. (2017). Wastes and by-products: Upcoming sources of carotenoids for biotechnological purposes and health-related applications. Trends in Food Science & Technology, 62, 33-48. doi:10.1016/j.tifs.2017.01.014 | es_ES |
dc.description.references | Pintea, A., Varga, A., Stepnowski, P., Socaciu, C., Culea, M., & Diehl, H. A. (2005). Chromatographic analysis of carotenol fatty acid esters inPhysalis alkekengi andHippophae rhamnoides. Phytochemical Analysis, 16(3), 188-195. doi:10.1002/pca.844 | es_ES |
dc.description.references | Lu, L., Wu, J., Wei, L., & Wu, F. (2016). Temperature dependence of aggregated structure of β-carotene by absorption spectral experiment and simulation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 169, 116-121. doi:10.1016/j.saa.2016.06.029 | es_ES |
dc.description.references | Durante, M., Lenucci, M. S., Laddomada, B., Mita, G., & Caretto, S. (2012). Effects of Sodium Alginate Bead Encapsulation on the Storage Stability of Durum Wheat (Triticum durumDesf.) Bran Oil Extracted by Supercritical CO2. Journal of Agricultural and Food Chemistry, 60(42), 10689-10695. doi:10.1021/jf303162m | es_ES |
dc.description.references | Eratte, D., Wang, B., Dowling, K., Barrow, C. J., & Adhikari, B. (2016). Survival and fermentation activity of probiotic bacteria and oxidative stability of omega-3 oil in co-microcapsules during storage. Journal of Functional Foods, 23, 485-496. doi:10.1016/j.jff.2016.03.005 | es_ES |
dc.description.references | Dulf, F. V. (2012). Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania. Chemistry Central Journal, 6(1). doi:10.1186/1752-153x-6-106 | es_ES |
dc.description.references | Wang, S.-L., Liu, L.-P., Jiao, L.-X., & Fan, M.-T. (2011). Volatile Profile of Sea Buckthorn Wines, Raw Juices and Must in Qinghai (China). International Journal of Food Properties, 14(4), 776-785. doi:10.1080/10942910903420750 | es_ES |
dc.description.references | Socaci, S. A., Socaciu, C., Tofană, M., Raţi, I. V., & Pintea, A. (2013). In-tube Extraction and GC-MS Analysis of Volatile Components from Wild and Cultivated sea buckthorn (Hippophae rhamnoides L. ssp. Carpatica ) Berry Varieties and Juice. Phytochemical Analysis, 24(4), 319-328. doi:10.1002/pca.2413 | es_ES |
dc.description.references | Peredo, A. G., Beristain, C. I., Pascual, L. A., Azuara, E., & Jimenez, M. (2016). The effect of prebiotics on the viability of encapsulated probiotic bacteria. LWT, 73, 191-196. doi:10.1016/j.lwt.2016.06.021 | es_ES |
dc.description.references | Pop, O. L., Vodnar, D. C., Suharoschi, R., Mudura, E., & Socaciu, C. (2015). L. plantarum ATCC 8014 Entrapment with Prebiotics and Lucerne Green Juice and Their Behavior in Simulated Gastrointestinal Conditions. Journal of Food Process Engineering, 39(5), 433-441. doi:10.1111/jfpe.12234 | es_ES |
dc.description.references | Laos, K., Lõugas, T., Mändmets, A., & Vokk, R. (2007). Encapsulation of β-carotene from sea buckthorn (Hippophaë rhamnoides L.) juice in furcellaran beads. Innovative Food Science & Emerging Technologies, 8(3), 395-398. doi:10.1016/j.ifset.2007.03.013 | es_ES |
dc.description.references | Silva, D., Pinto, L. F. V., Bozukova, D., Santos, L. F., Serro, A. P., & Saramago, B. (2016). Chitosan/alginate based multilayers to control drug release from ophthalmic lens. Colloids and Surfaces B: Biointerfaces, 147, 81-89. doi:10.1016/j.colsurfb.2016.07.047 | es_ES |
dc.description.references | Woo, I.-S., Rhee, I.-K., & Park, H.-D. (2000). Differential Damage in Bacterial Cells by Microwave Radiation on the Basis of Cell Wall Structure. Applied and Environmental Microbiology, 66(5), 2243-2247. doi:10.1128/aem.66.5.2243-2247.2000 | es_ES |
dc.description.references | Haddaji, N., Mahdhi, A. K., Krifi, B., Ismail, M. B., & Bakhrouf, A. (2015). Change in cell surface properties of Lactobacillus casei under heat shock treatment. FEMS Microbiology Letters, 362(9). doi:10.1093/femsle/fnv047 | es_ES |
dc.description.references | Hsieh, F.-C., Lan, C.-C. E., Huang, T.-Y., Chen, K.-W., Chai, C.-Y., Chen, W.-T., … Wu, C.-S. (2016). Heat-killed and live Lactobacillus reuteri GMNL-263 exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats. Food & Function, 7(5), 2374-2388. doi:10.1039/c5fo01396h | es_ES |
dc.description.references | Liévin-Le Moal, V. (2015). A gastrointestinal anti-infectious biotherapeutic agent: the heat-treatedLactobacillusLB. Therapeutic Advances in Gastroenterology, 9(1), 57-75. doi:10.1177/1756283x15602831 | es_ES |
dc.description.references | Sidira, M., Karapetsas, A., Galanis, A., Kanellaki, M., & Kourkoutas, Y. (2014). Effective survival of immobilized Lactobacillus casei during ripening and heat treatment of probiotic dry-fermented sausages and investigation of the microbial dynamics. Meat Science, 96(2), 948-955. doi:10.1016/j.meatsci.2013.09.013 | es_ES |
dc.description.references | Hartvig, D., Hausner, H., Wendin, K., & Bredie, W. L. P. (2014). Quinine sensitivity influences the acceptance of sea-buckthorn and grapefruit juices in 9- to 11-year-old children. Appetite, 74, 70-78. doi:10.1016/j.appet.2013.11.015 | es_ES |
dc.description.references | Darjani, P., Hosseini Nezhad, M., Kadkhodaee, R., & Milani, E. (2016). Influence of prebiotic and coating materials on morphology and survival of a probiotic strain of Lactobacillus casei exposed to simulated gastrointestinal conditions. LWT, 73, 162-167. doi:10.1016/j.lwt.2016.05.032 | es_ES |
dc.description.references | Dulf, F. V., Vodnar, D. C., & Socaciu, C. (2016). Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chemistry, 209, 27-36. doi:10.1016/j.foodchem.2016.04.016 | es_ES |
dc.description.references | Chan, E.-S., Wong, S.-L., Lee, P.-P., Lee, J.-S., Ti, T. B., Zhang, Z., … Yim, Z.-H. (2011). Effects of starch filler on the physical properties of lyophilized calcium–alginate beads and the viability of encapsulated cells. Carbohydrate Polymers, 83(1), 225-232. doi:10.1016/j.carbpol.2010.07.044 | es_ES |
dc.description.references | Sandoval-Castilla, O., Lobato-Calleros, C., García-Galindo, H. S., Alvarez-Ramírez, J., & Vernon-Carter, E. J. (2010). Textural properties of alginate–pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Research International, 43(1), 111-117. doi:10.1016/j.foodres.2009.09.010 | es_ES |
dc.description.references | Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j | es_ES |