- -

Characterization of Sea Buckthorn Extract and its effect on free and encapsulated Lactobacillus casei

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization of Sea Buckthorn Extract and its effect on free and encapsulated Lactobacillus casei

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pop, O.L. es_ES
dc.contributor.author Dulf, F.V. es_ES
dc.contributor.author Cuibus, L. es_ES
dc.contributor.author Castro Giraldez, Marta es_ES
dc.contributor.author Fito Suñer, Pedro José es_ES
dc.contributor.author Vodnar, D.C. es_ES
dc.contributor.author Coman, C. es_ES
dc.contributor.author Socaciu, C. es_ES
dc.contributor.author Suharoschi, R. es_ES
dc.date.accessioned 2020-09-10T03:31:53Z
dc.date.available 2020-09-10T03:31:53Z
dc.date.issued 2017-11-24 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149721
dc.description.abstract [EN] Probiotics are bacteria that can provide health benefits to consumers and are suitable to be added to a variety of foods. In this research, viability of immobilized Lactobacillus casei in alginate with or without sea buckthorn lipid extract were studied during heat treatment and with an in vitro gastrointestinal model. The characterization of the lipid extract was also done using the UV-Vis spectrometry (UV-Vis), high-performance liquid chromatography photodiode array detection method (HPLC-PDA), gas chromatography coupled with mass spectrometry (GS-MS) and Cryo scanning electron microscopy (Cryo-SEM). During heat treatment, the entrapped probiotic cells proved high viability (>6 CFU log/g), even at temperatures above 50 degrees C. The rich in monounsaturated fatty acids sea buckthorn fraction improved the in vitro digestion passage regarding the probiotic viability. The survival of the probiotic cells was 15% higher after 2 h in the acidic medium of the simulated gastric fluid in the sample where L. casei was encapsulated with the sea buckthorn extract compared with the samples where no extract was added. Thus, this approach may be effective for the future development of probiotic-supplemented foods as foods with health welfare for the consumers. es_ES
dc.description.sponsorship This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-1255 and PN-III-P2-2.1-CI-2017-0056. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Molecular Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Lactobacillus casei es_ES
dc.subject Heat treatment es_ES
dc.subject Gastrointestinal passage es_ES
dc.subject Sea buckthorn es_ES
dc.subject Encapsulation es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Characterization of Sea Buckthorn Extract and its effect on free and encapsulated Lactobacillus casei es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijms18122513 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PN-II-RU-TE-2014-4-1255/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PN-III-P2-2.1-CI-2017-0056/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Pop, O.; Dulf, F.; Cuibus, L.; Castro Giraldez, M.; Fito Suñer, PJ.; Vodnar, D.; Coman, C.... (2017). Characterization of Sea Buckthorn Extract and its effect on free and encapsulated Lactobacillus casei. International Journal of Molecular Sciences. 18(12):1-15. https://doi.org/10.3390/ijms18122513 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijms18122513 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 18 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 1422-0067 es_ES
dc.identifier.pmid 29186761 es_ES
dc.identifier.pmcid PMC5751116 es_ES
dc.relation.pasarela S\348638 es_ES
dc.contributor.funder Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding, Rumanía es_ES
dc.description.references Coghetto, C. C., Flores, S. H., Brinques, G. B., & Záchia Ayub, M. A. (2016). Viability and alternative uses of a dried powder, microencapsulated Lactobacillus plantarum without the use of cold chain or dairy products. LWT - Food Science and Technology, 71, 54-59. doi:10.1016/j.lwt.2016.03.020 es_ES
dc.description.references Sanders, M. E. (2008). Probiotics: Definition, Sources, Selection, and Uses. Clinical Infectious Diseases, 46(s2), S58-S61. doi:10.1086/523341 es_ES
dc.description.references Butel, M.-J. (2014). Probiotics, gut microbiota and health. Médecine et Maladies Infectieuses, 44(1), 1-8. doi:10.1016/j.medmal.2013.10.002 es_ES
dc.description.references Eckburg, P. B. (2005). Diversity of the Human Intestinal Microbial Flora. Science, 308(5728), 1635-1638. doi:10.1126/science.1110591 es_ES
dc.description.references Berger, R. E. (2005). Lactobacilli for Prevention of Urogenital Infections: A Review. Journal of Urology, 174(1), 165-166. doi:10.1016/s0022-5347(05)60052-3 es_ES
dc.description.references Aguirre, M., & Venema, K. (2015). The art of targeting gut microbiota for tackling human obesity. Genes & Nutrition, 10(4). doi:10.1007/s12263-015-0472-4 es_ES
dc.description.references Ivey, K. L., Hodgson, J. M., Kerr, D. A., Thompson, P. L., Stojceski, B., & Prince, R. L. (2015). The effect of yoghurt and its probiotics on blood pressure and serum lipid profile; a randomised controlled trial. Nutrition, Metabolism and Cardiovascular Diseases, 25(1), 46-51. doi:10.1016/j.numecd.2014.07.012 es_ES
dc.description.references Chávez-Tapia, N. C., González-Rodríguez, L., Jeong, M., López-Ramírez, Y., Barbero-Becerra, V., Juárez-Hernández, E., … Uribe, M. (2015). Current evidence on the use of probiotics in liver diseases. Journal of Functional Foods, 17, 137-151. doi:10.1016/j.jff.2015.05.009 es_ES
dc.description.references Daliri, E. B.-M., & Lee, B. H. (2015). New perspectives on probiotics in health and disease. Food Science and Human Wellness, 4(2), 56-65. doi:10.1016/j.fshw.2015.06.002 es_ES
dc.description.references Amara, A. A., & Shibl, A. (2015). Role of Probiotics in health improvement, infection control and disease treatment and management. Saudi Pharmaceutical Journal, 23(2), 107-114. doi:10.1016/j.jsps.2013.07.001 es_ES
dc.description.references Tian, J., Liu, C., Xiang, H., Zheng, X., Peng, G., Zhang, X., … Qin, X. (2015). Investigation on the antidepressant effect of sea buckthorn seed oil through the GC-MS-based metabolomics approach coupled with multivariate analysis. Food & Function, 6(11), 3585-3592. doi:10.1039/c5fo00695c es_ES
dc.description.references Zeb, A., & Ullah, S. (2015). Sea buckthorn seed oil protects against the oxidative stress produced by thermally oxidized lipids. Food Chemistry, 186, 6-12. doi:10.1016/j.foodchem.2015.03.053 es_ES
dc.description.references Cao, H., Wang, J., Dong, X., Han, Y., Ma, Q., Ding, Y., … Deng, X. (2015). Carotenoid accumulation affects redox status, starch metabolism, and flavonoid/anthocyanin accumulation in citrus. BMC Plant Biology, 15(1), 27. doi:10.1186/s12870-015-0426-4 es_ES
dc.description.references Monego, D. L., da Rosa, M. B., & do Nascimento, P. C. (2017). Applications of computational chemistry to the study of the antiradical activity of carotenoids: A review. Food Chemistry, 217, 37-44. doi:10.1016/j.foodchem.2016.08.073 es_ES
dc.description.references Gunenc, A., Khoury, C., Legault, C., Mirrashed, H., Rijke, J., & Hosseinian, F. (2016). Seabuckthorn as a novel prebiotic source improves probiotic viability in yogurt. LWT - Food Science and Technology, 66, 490-495. doi:10.1016/j.lwt.2015.10.061 es_ES
dc.description.references Kumari, A., Angmo, K., Monika, & Bhalla, T. C. (2016). Probiotic attributes of indigenous Lactobacillus spp. isolated from traditional fermented foods and beverages of north-western Himalayas using in vitro screening and principal component analysis. Journal of Food Science and Technology, 53(5), 2463-2475. doi:10.1007/s13197-016-2231-y es_ES
dc.description.references De Prisco, A., Maresca, D., Ongeng, D., & Mauriello, G. (2015). Microencapsulation by vibrating technology of the probiotic strain Lactobacillus reuteri DSM 17938 to enhance its survival in foods and in gastrointestinal environment. LWT - Food Science and Technology, 61(2), 452-462. doi:10.1016/j.lwt.2014.12.011 es_ES
dc.description.references Ranadheera, C. S., Evans, C. A., Adams, M. C., & Baines, S. K. (2012). In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat’s milk ice cream and yogurt. Food Research International, 49(2), 619-625. doi:10.1016/j.foodres.2012.09.007 es_ES
dc.description.references Belščak-Cvitanović, A., Bušić, A., Barišić, L., Vrsaljko, D., Karlović, S., Špoljarić, I., … Komes, D. (2016). Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocolloids, 57, 139-152. doi:10.1016/j.foodhyd.2016.01.020 es_ES
dc.description.references Coghetto, C. C., Brinques, G. B., Siqueira, N. M., Pletsch, J., Soares, R. M. D., & Ayub, M. A. Z. (2016). Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. Journal of Functional Foods, 24, 316-326. doi:10.1016/j.jff.2016.03.036 es_ES
dc.description.references Dulf, F., Andrei, S., Bunea, A., & Socaciu, C. (2012). Fatty acid and phytosterol contents of some Romanian wild and cultivated berry pomaces. Chemical Papers, 66(10). doi:10.2478/s11696-012-0156-0 es_ES
dc.description.references Simopoulos, A. . (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy, 56(8), 365-379. doi:10.1016/s0753-3322(02)00253-6 es_ES
dc.description.references Ho, L. S., Nair, A., Mohd Yusof, H., Kulaveerasingam, H., & Jangi, M. S. (2014). Morphometry of Lipid Bodies in Embryo, Kernel and Mesocarp of Oil Palm: Its Relationship to Yield. American Journal of Plant Sciences, 05(09), 1163-1173. doi:10.4236/ajps.2014.59129 es_ES
dc.description.references Chávarri, M., Marañón, I., Ares, R., Ibáñez, F. C., Marzo, F., & Villarán, M. del C. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology, 142(1-2), 185-189. doi:10.1016/j.ijfoodmicro.2010.06.022 es_ES
dc.description.references Pop, O. L., Brandau, T., Schwinn, J., Vodnar, D. C., & Socaciu, C. (2014). The influence of different polymers on viability of Bifidobacterium lactis 300b during encapsulation, freeze-drying and storage. Journal of Food Science and Technology, 52(7), 4146-4155. doi:10.1007/s13197-014-1441-4 es_ES
dc.description.references Mapelli-Brahm, P., Corte-Real, J., Meléndez-Martínez, A. J., & Bohn, T. (2017). Bioaccessibility of phytoene and phytofluene is superior to other carotenoids from selected fruit and vegetable juices. Food Chemistry, 229, 304-311. doi:10.1016/j.foodchem.2017.02.074 es_ES
dc.description.references Martins, N., & Ferreira, I. C. F. R. (2017). Wastes and by-products: Upcoming sources of carotenoids for biotechnological purposes and health-related applications. Trends in Food Science & Technology, 62, 33-48. doi:10.1016/j.tifs.2017.01.014 es_ES
dc.description.references Pintea, A., Varga, A., Stepnowski, P., Socaciu, C., Culea, M., & Diehl, H. A. (2005). Chromatographic analysis of carotenol fatty acid esters inPhysalis alkekengi andHippophae rhamnoides. Phytochemical Analysis, 16(3), 188-195. doi:10.1002/pca.844 es_ES
dc.description.references Lu, L., Wu, J., Wei, L., & Wu, F. (2016). Temperature dependence of aggregated structure of β-carotene by absorption spectral experiment and simulation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 169, 116-121. doi:10.1016/j.saa.2016.06.029 es_ES
dc.description.references Durante, M., Lenucci, M. S., Laddomada, B., Mita, G., & Caretto, S. (2012). Effects of Sodium Alginate Bead Encapsulation on the Storage Stability of Durum Wheat (Triticum durumDesf.) Bran Oil Extracted by Supercritical CO2. Journal of Agricultural and Food Chemistry, 60(42), 10689-10695. doi:10.1021/jf303162m es_ES
dc.description.references Eratte, D., Wang, B., Dowling, K., Barrow, C. J., & Adhikari, B. (2016). Survival and fermentation activity of probiotic bacteria and oxidative stability of omega-3 oil in co-microcapsules during storage. Journal of Functional Foods, 23, 485-496. doi:10.1016/j.jff.2016.03.005 es_ES
dc.description.references Dulf, F. V. (2012). Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania. Chemistry Central Journal, 6(1). doi:10.1186/1752-153x-6-106 es_ES
dc.description.references Wang, S.-L., Liu, L.-P., Jiao, L.-X., & Fan, M.-T. (2011). Volatile Profile of Sea Buckthorn Wines, Raw Juices and Must in Qinghai (China). International Journal of Food Properties, 14(4), 776-785. doi:10.1080/10942910903420750 es_ES
dc.description.references Socaci, S. A., Socaciu, C., Tofană, M., Raţi, I. V., & Pintea, A. (2013). In-tube Extraction and GC-MS Analysis of Volatile Components from Wild and Cultivated sea buckthorn (Hippophae rhamnoides L. ssp. Carpatica ) Berry Varieties and Juice. Phytochemical Analysis, 24(4), 319-328. doi:10.1002/pca.2413 es_ES
dc.description.references Peredo, A. G., Beristain, C. I., Pascual, L. A., Azuara, E., & Jimenez, M. (2016). The effect of prebiotics on the viability of encapsulated probiotic bacteria. LWT, 73, 191-196. doi:10.1016/j.lwt.2016.06.021 es_ES
dc.description.references Pop, O. L., Vodnar, D. C., Suharoschi, R., Mudura, E., & Socaciu, C. (2015). L. plantarum ATCC 8014 Entrapment with Prebiotics and Lucerne Green Juice and Their Behavior in Simulated Gastrointestinal Conditions. Journal of Food Process Engineering, 39(5), 433-441. doi:10.1111/jfpe.12234 es_ES
dc.description.references Laos, K., Lõugas, T., Mändmets, A., & Vokk, R. (2007). Encapsulation of β-carotene from sea buckthorn (Hippophaë rhamnoides L.) juice in furcellaran beads. Innovative Food Science & Emerging Technologies, 8(3), 395-398. doi:10.1016/j.ifset.2007.03.013 es_ES
dc.description.references Silva, D., Pinto, L. F. V., Bozukova, D., Santos, L. F., Serro, A. P., & Saramago, B. (2016). Chitosan/alginate based multilayers to control drug release from ophthalmic lens. Colloids and Surfaces B: Biointerfaces, 147, 81-89. doi:10.1016/j.colsurfb.2016.07.047 es_ES
dc.description.references Woo, I.-S., Rhee, I.-K., & Park, H.-D. (2000). Differential Damage in Bacterial Cells by Microwave Radiation on the Basis of Cell Wall Structure. Applied and Environmental Microbiology, 66(5), 2243-2247. doi:10.1128/aem.66.5.2243-2247.2000 es_ES
dc.description.references Haddaji, N., Mahdhi, A. K., Krifi, B., Ismail, M. B., & Bakhrouf, A. (2015). Change in cell surface properties of Lactobacillus casei under heat shock treatment. FEMS Microbiology Letters, 362(9). doi:10.1093/femsle/fnv047 es_ES
dc.description.references Hsieh, F.-C., Lan, C.-C. E., Huang, T.-Y., Chen, K.-W., Chai, C.-Y., Chen, W.-T., … Wu, C.-S. (2016). Heat-killed and live Lactobacillus reuteri GMNL-263 exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats. Food & Function, 7(5), 2374-2388. doi:10.1039/c5fo01396h es_ES
dc.description.references Liévin-Le Moal, V. (2015). A gastrointestinal anti-infectious biotherapeutic agent: the heat-treatedLactobacillusLB. Therapeutic Advances in Gastroenterology, 9(1), 57-75. doi:10.1177/1756283x15602831 es_ES
dc.description.references Sidira, M., Karapetsas, A., Galanis, A., Kanellaki, M., & Kourkoutas, Y. (2014). Effective survival of immobilized Lactobacillus casei during ripening and heat treatment of probiotic dry-fermented sausages and investigation of the microbial dynamics. Meat Science, 96(2), 948-955. doi:10.1016/j.meatsci.2013.09.013 es_ES
dc.description.references Hartvig, D., Hausner, H., Wendin, K., & Bredie, W. L. P. (2014). Quinine sensitivity influences the acceptance of sea-buckthorn and grapefruit juices in 9- to 11-year-old children. Appetite, 74, 70-78. doi:10.1016/j.appet.2013.11.015 es_ES
dc.description.references Darjani, P., Hosseini Nezhad, M., Kadkhodaee, R., & Milani, E. (2016). Influence of prebiotic and coating materials on morphology and survival of a probiotic strain of Lactobacillus casei exposed to simulated gastrointestinal conditions. LWT, 73, 162-167. doi:10.1016/j.lwt.2016.05.032 es_ES
dc.description.references Dulf, F. V., Vodnar, D. C., & Socaciu, C. (2016). Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chemistry, 209, 27-36. doi:10.1016/j.foodchem.2016.04.016 es_ES
dc.description.references Chan, E.-S., Wong, S.-L., Lee, P.-P., Lee, J.-S., Ti, T. B., Zhang, Z., … Yim, Z.-H. (2011). Effects of starch filler on the physical properties of lyophilized calcium–alginate beads and the viability of encapsulated cells. Carbohydrate Polymers, 83(1), 225-232. doi:10.1016/j.carbpol.2010.07.044 es_ES
dc.description.references Sandoval-Castilla, O., Lobato-Calleros, C., García-Galindo, H. S., Alvarez-Ramírez, J., & Vernon-Carter, E. J. (2010). Textural properties of alginate–pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Research International, 43(1), 111-117. doi:10.1016/j.foodres.2009.09.010 es_ES
dc.description.references Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem