- -

Characterization of Sea Buckthorn Extract and its effect on free and encapsulated Lactobacillus casei

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization of Sea Buckthorn Extract and its effect on free and encapsulated Lactobacillus casei

Mostrar el registro completo del ítem

Pop, O.; Dulf, F.; Cuibus, L.; Castro Giraldez, M.; Fito Suñer, PJ.; Vodnar, D.; Coman, C.... (2017). Characterization of Sea Buckthorn Extract and its effect on free and encapsulated Lactobacillus casei. International Journal of Molecular Sciences. 18(12):1-15. https://doi.org/10.3390/ijms18122513

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149721

Ficheros en el ítem

Metadatos del ítem

Título: Characterization of Sea Buckthorn Extract and its effect on free and encapsulated Lactobacillus casei
Autor: Pop, O.L. Dulf, F.V. Cuibus, L. Castro Giraldez, Marta Fito Suñer, Pedro José Vodnar, D.C. Coman, C. Socaciu, C. Suharoschi, R.
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] Probiotics are bacteria that can provide health benefits to consumers and are suitable to be added to a variety of foods. In this research, viability of immobilized Lactobacillus casei in alginate with or without sea ...[+]
Palabras clave: Lactobacillus casei , Heat treatment , Gastrointestinal passage , Sea buckthorn , Encapsulation
Derechos de uso: Reconocimiento (by)
Fuente:
International Journal of Molecular Sciences. (eissn: 1422-0067 )
DOI: 10.3390/ijms18122513
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ijms18122513
Código del Proyecto:
info:eu-repo/grantAgreement/UEFISCDI//PN-II-RU-TE-2014-4-1255/
info:eu-repo/grantAgreement/UEFISCDI//PN-III-P2-2.1-CI-2017-0056/
Agradecimientos:
This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number PN-II-RU-TE-2014-4-1255 and PN-III-P2-2.1-CI-2017-0056.
Tipo: Artículo

References

Coghetto, C. C., Flores, S. H., Brinques, G. B., & Záchia Ayub, M. A. (2016). Viability and alternative uses of a dried powder, microencapsulated Lactobacillus plantarum without the use of cold chain or dairy products. LWT - Food Science and Technology, 71, 54-59. doi:10.1016/j.lwt.2016.03.020

Sanders, M. E. (2008). Probiotics: Definition, Sources, Selection, and Uses. Clinical Infectious Diseases, 46(s2), S58-S61. doi:10.1086/523341

Butel, M.-J. (2014). Probiotics, gut microbiota and health. Médecine et Maladies Infectieuses, 44(1), 1-8. doi:10.1016/j.medmal.2013.10.002 [+]
Coghetto, C. C., Flores, S. H., Brinques, G. B., & Záchia Ayub, M. A. (2016). Viability and alternative uses of a dried powder, microencapsulated Lactobacillus plantarum without the use of cold chain or dairy products. LWT - Food Science and Technology, 71, 54-59. doi:10.1016/j.lwt.2016.03.020

Sanders, M. E. (2008). Probiotics: Definition, Sources, Selection, and Uses. Clinical Infectious Diseases, 46(s2), S58-S61. doi:10.1086/523341

Butel, M.-J. (2014). Probiotics, gut microbiota and health. Médecine et Maladies Infectieuses, 44(1), 1-8. doi:10.1016/j.medmal.2013.10.002

Eckburg, P. B. (2005). Diversity of the Human Intestinal Microbial Flora. Science, 308(5728), 1635-1638. doi:10.1126/science.1110591

Berger, R. E. (2005). Lactobacilli for Prevention of Urogenital Infections: A Review. Journal of Urology, 174(1), 165-166. doi:10.1016/s0022-5347(05)60052-3

Aguirre, M., & Venema, K. (2015). The art of targeting gut microbiota for tackling human obesity. Genes & Nutrition, 10(4). doi:10.1007/s12263-015-0472-4

Ivey, K. L., Hodgson, J. M., Kerr, D. A., Thompson, P. L., Stojceski, B., & Prince, R. L. (2015). The effect of yoghurt and its probiotics on blood pressure and serum lipid profile; a randomised controlled trial. Nutrition, Metabolism and Cardiovascular Diseases, 25(1), 46-51. doi:10.1016/j.numecd.2014.07.012

Chávez-Tapia, N. C., González-Rodríguez, L., Jeong, M., López-Ramírez, Y., Barbero-Becerra, V., Juárez-Hernández, E., … Uribe, M. (2015). Current evidence on the use of probiotics in liver diseases. Journal of Functional Foods, 17, 137-151. doi:10.1016/j.jff.2015.05.009

Daliri, E. B.-M., & Lee, B. H. (2015). New perspectives on probiotics in health and disease. Food Science and Human Wellness, 4(2), 56-65. doi:10.1016/j.fshw.2015.06.002

Amara, A. A., & Shibl, A. (2015). Role of Probiotics in health improvement, infection control and disease treatment and management. Saudi Pharmaceutical Journal, 23(2), 107-114. doi:10.1016/j.jsps.2013.07.001

Tian, J., Liu, C., Xiang, H., Zheng, X., Peng, G., Zhang, X., … Qin, X. (2015). Investigation on the antidepressant effect of sea buckthorn seed oil through the GC-MS-based metabolomics approach coupled with multivariate analysis. Food & Function, 6(11), 3585-3592. doi:10.1039/c5fo00695c

Zeb, A., & Ullah, S. (2015). Sea buckthorn seed oil protects against the oxidative stress produced by thermally oxidized lipids. Food Chemistry, 186, 6-12. doi:10.1016/j.foodchem.2015.03.053

Cao, H., Wang, J., Dong, X., Han, Y., Ma, Q., Ding, Y., … Deng, X. (2015). Carotenoid accumulation affects redox status, starch metabolism, and flavonoid/anthocyanin accumulation in citrus. BMC Plant Biology, 15(1), 27. doi:10.1186/s12870-015-0426-4

Monego, D. L., da Rosa, M. B., & do Nascimento, P. C. (2017). Applications of computational chemistry to the study of the antiradical activity of carotenoids: A review. Food Chemistry, 217, 37-44. doi:10.1016/j.foodchem.2016.08.073

Gunenc, A., Khoury, C., Legault, C., Mirrashed, H., Rijke, J., & Hosseinian, F. (2016). Seabuckthorn as a novel prebiotic source improves probiotic viability in yogurt. LWT - Food Science and Technology, 66, 490-495. doi:10.1016/j.lwt.2015.10.061

Kumari, A., Angmo, K., Monika, & Bhalla, T. C. (2016). Probiotic attributes of indigenous Lactobacillus spp. isolated from traditional fermented foods and beverages of north-western Himalayas using in vitro screening and principal component analysis. Journal of Food Science and Technology, 53(5), 2463-2475. doi:10.1007/s13197-016-2231-y

De Prisco, A., Maresca, D., Ongeng, D., & Mauriello, G. (2015). Microencapsulation by vibrating technology of the probiotic strain Lactobacillus reuteri DSM 17938 to enhance its survival in foods and in gastrointestinal environment. LWT - Food Science and Technology, 61(2), 452-462. doi:10.1016/j.lwt.2014.12.011

Ranadheera, C. S., Evans, C. A., Adams, M. C., & Baines, S. K. (2012). In vitro analysis of gastrointestinal tolerance and intestinal cell adhesion of probiotics in goat’s milk ice cream and yogurt. Food Research International, 49(2), 619-625. doi:10.1016/j.foodres.2012.09.007

Belščak-Cvitanović, A., Bušić, A., Barišić, L., Vrsaljko, D., Karlović, S., Špoljarić, I., … Komes, D. (2016). Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocolloids, 57, 139-152. doi:10.1016/j.foodhyd.2016.01.020

Coghetto, C. C., Brinques, G. B., Siqueira, N. M., Pletsch, J., Soares, R. M. D., & Ayub, M. A. Z. (2016). Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. Journal of Functional Foods, 24, 316-326. doi:10.1016/j.jff.2016.03.036

Dulf, F., Andrei, S., Bunea, A., & Socaciu, C. (2012). Fatty acid and phytosterol contents of some Romanian wild and cultivated berry pomaces. Chemical Papers, 66(10). doi:10.2478/s11696-012-0156-0

Simopoulos, A. . (2002). The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine & Pharmacotherapy, 56(8), 365-379. doi:10.1016/s0753-3322(02)00253-6

Ho, L. S., Nair, A., Mohd Yusof, H., Kulaveerasingam, H., & Jangi, M. S. (2014). Morphometry of Lipid Bodies in Embryo, Kernel and Mesocarp of Oil Palm: Its Relationship to Yield. American Journal of Plant Sciences, 05(09), 1163-1173. doi:10.4236/ajps.2014.59129

Chávarri, M., Marañón, I., Ares, R., Ibáñez, F. C., Marzo, F., & Villarán, M. del C. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology, 142(1-2), 185-189. doi:10.1016/j.ijfoodmicro.2010.06.022

Pop, O. L., Brandau, T., Schwinn, J., Vodnar, D. C., & Socaciu, C. (2014). The influence of different polymers on viability of Bifidobacterium lactis 300b during encapsulation, freeze-drying and storage. Journal of Food Science and Technology, 52(7), 4146-4155. doi:10.1007/s13197-014-1441-4

Mapelli-Brahm, P., Corte-Real, J., Meléndez-Martínez, A. J., & Bohn, T. (2017). Bioaccessibility of phytoene and phytofluene is superior to other carotenoids from selected fruit and vegetable juices. Food Chemistry, 229, 304-311. doi:10.1016/j.foodchem.2017.02.074

Martins, N., & Ferreira, I. C. F. R. (2017). Wastes and by-products: Upcoming sources of carotenoids for biotechnological purposes and health-related applications. Trends in Food Science & Technology, 62, 33-48. doi:10.1016/j.tifs.2017.01.014

Pintea, A., Varga, A., Stepnowski, P., Socaciu, C., Culea, M., & Diehl, H. A. (2005). Chromatographic analysis of carotenol fatty acid esters inPhysalis alkekengi andHippophae rhamnoides. Phytochemical Analysis, 16(3), 188-195. doi:10.1002/pca.844

Lu, L., Wu, J., Wei, L., & Wu, F. (2016). Temperature dependence of aggregated structure of β-carotene by absorption spectral experiment and simulation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 169, 116-121. doi:10.1016/j.saa.2016.06.029

Durante, M., Lenucci, M. S., Laddomada, B., Mita, G., & Caretto, S. (2012). Effects of Sodium Alginate Bead Encapsulation on the Storage Stability of Durum Wheat (Triticum durumDesf.) Bran Oil Extracted by Supercritical CO2. Journal of Agricultural and Food Chemistry, 60(42), 10689-10695. doi:10.1021/jf303162m

Eratte, D., Wang, B., Dowling, K., Barrow, C. J., & Adhikari, B. (2016). Survival and fermentation activity of probiotic bacteria and oxidative stability of omega-3 oil in co-microcapsules during storage. Journal of Functional Foods, 23, 485-496. doi:10.1016/j.jff.2016.03.005

Dulf, F. V. (2012). Fatty acids in berry lipids of six sea buckthorn (Hippophae rhamnoides L., subspecies carpatica) cultivars grown in Romania. Chemistry Central Journal, 6(1). doi:10.1186/1752-153x-6-106

Wang, S.-L., Liu, L.-P., Jiao, L.-X., & Fan, M.-T. (2011). Volatile Profile of Sea Buckthorn Wines, Raw Juices and Must in Qinghai (China). International Journal of Food Properties, 14(4), 776-785. doi:10.1080/10942910903420750

Socaci, S. A., Socaciu, C., Tofană, M., Raţi, I. V., & Pintea, A. (2013). In-tube Extraction and GC-MS Analysis of Volatile Components from Wild and Cultivated sea buckthorn (Hippophae rhamnoides L. ssp. Carpatica ) Berry Varieties and Juice. Phytochemical Analysis, 24(4), 319-328. doi:10.1002/pca.2413

Peredo, A. G., Beristain, C. I., Pascual, L. A., Azuara, E., & Jimenez, M. (2016). The effect of prebiotics on the viability of encapsulated probiotic bacteria. LWT, 73, 191-196. doi:10.1016/j.lwt.2016.06.021

Pop, O. L., Vodnar, D. C., Suharoschi, R., Mudura, E., & Socaciu, C. (2015). L. plantarum ATCC 8014 Entrapment with Prebiotics and Lucerne Green Juice and Their Behavior in Simulated Gastrointestinal Conditions. Journal of Food Process Engineering, 39(5), 433-441. doi:10.1111/jfpe.12234

Laos, K., Lõugas, T., Mändmets, A., & Vokk, R. (2007). Encapsulation of β-carotene from sea buckthorn (Hippophaë rhamnoides L.) juice in furcellaran beads. Innovative Food Science & Emerging Technologies, 8(3), 395-398. doi:10.1016/j.ifset.2007.03.013

Silva, D., Pinto, L. F. V., Bozukova, D., Santos, L. F., Serro, A. P., & Saramago, B. (2016). Chitosan/alginate based multilayers to control drug release from ophthalmic lens. Colloids and Surfaces B: Biointerfaces, 147, 81-89. doi:10.1016/j.colsurfb.2016.07.047

Woo, I.-S., Rhee, I.-K., & Park, H.-D. (2000). Differential Damage in Bacterial Cells by Microwave Radiation on the Basis of Cell Wall Structure. Applied and Environmental Microbiology, 66(5), 2243-2247. doi:10.1128/aem.66.5.2243-2247.2000

Haddaji, N., Mahdhi, A. K., Krifi, B., Ismail, M. B., & Bakhrouf, A. (2015). Change in cell surface properties of Lactobacillus casei under heat shock treatment. FEMS Microbiology Letters, 362(9). doi:10.1093/femsle/fnv047

Hsieh, F.-C., Lan, C.-C. E., Huang, T.-Y., Chen, K.-W., Chai, C.-Y., Chen, W.-T., … Wu, C.-S. (2016). Heat-killed and live Lactobacillus reuteri GMNL-263 exhibit similar effects on improving metabolic functions in high-fat diet-induced obese rats. Food & Function, 7(5), 2374-2388. doi:10.1039/c5fo01396h

Liévin-Le Moal, V. (2015). A gastrointestinal anti-infectious biotherapeutic agent: the heat-treatedLactobacillusLB. Therapeutic Advances in Gastroenterology, 9(1), 57-75. doi:10.1177/1756283x15602831

Sidira, M., Karapetsas, A., Galanis, A., Kanellaki, M., & Kourkoutas, Y. (2014). Effective survival of immobilized Lactobacillus casei during ripening and heat treatment of probiotic dry-fermented sausages and investigation of the microbial dynamics. Meat Science, 96(2), 948-955. doi:10.1016/j.meatsci.2013.09.013

Hartvig, D., Hausner, H., Wendin, K., & Bredie, W. L. P. (2014). Quinine sensitivity influences the acceptance of sea-buckthorn and grapefruit juices in 9- to 11-year-old children. Appetite, 74, 70-78. doi:10.1016/j.appet.2013.11.015

Darjani, P., Hosseini Nezhad, M., Kadkhodaee, R., & Milani, E. (2016). Influence of prebiotic and coating materials on morphology and survival of a probiotic strain of Lactobacillus casei exposed to simulated gastrointestinal conditions. LWT, 73, 162-167. doi:10.1016/j.lwt.2016.05.032

Dulf, F. V., Vodnar, D. C., & Socaciu, C. (2016). Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chemistry, 209, 27-36. doi:10.1016/j.foodchem.2016.04.016

Chan, E.-S., Wong, S.-L., Lee, P.-P., Lee, J.-S., Ti, T. B., Zhang, Z., … Yim, Z.-H. (2011). Effects of starch filler on the physical properties of lyophilized calcium–alginate beads and the viability of encapsulated cells. Carbohydrate Polymers, 83(1), 225-232. doi:10.1016/j.carbpol.2010.07.044

Sandoval-Castilla, O., Lobato-Calleros, C., García-Galindo, H. S., Alvarez-Ramírez, J., & Vernon-Carter, E. J. (2010). Textural properties of alginate–pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Research International, 43(1), 111-117. doi:10.1016/j.foodres.2009.09.010

Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem