- -

Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide-graphene oxide composites

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide-graphene oxide composites

Show full item record

Abellán Sáez, G.; Latorre Sánchez, M.; Fornes Seguí, V.; Ribera, A.; García Gómez, H. (2012). Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide-graphene oxide composites. Chemical Communications (Online). 48(93):11416-11418. https://doi.org/10.1039/c2cc35750j

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150294

Files in this item

Item Metadata

Title: Graphene as a carbon source effects the nanometallurgy of nickel in Ni,Mn layered double hydroxide-graphene oxide composites
Author: Abellán Sáez, Gonzalo Latorre Sánchez, Marcos Fornes Seguí, Vicente Ribera, Antonio García Gómez, Hermenegildo
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] Thermal treatment of the hybrid material formed by the spontaneous precipitation of graphene oxide and Ni,Mn layered double hydroxide leads to the segregation of nickel metal nanoparticles (Ni NPs) and the decomposition ...[+]
Copyrigths: Cerrado
Source:
Chemical Communications (Online). (issn: 1364-548X )
DOI: 10.1039/c2cc35750j
Publisher:
Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/c2cc35750j
Thanks:
This work has been supported by the Spanish Ministerio de Economia y Competitividad with FEDER confinancing (Project Cosolider-Ingenio in Molecular Nanoscience CSD2007-00010 and CTQ2011-26507) and the Generalitat Valenciana ...[+]
Type: Artículo

References

Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849

Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev., 41(2), 666-686. doi:10.1039/c1cs15078b

Wang, H., Casalongue, H. S., Liang, Y., & Dai, H. (2010). Ni(OH)2Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. Journal of the American Chemical Society, 132(21), 7472-7477. doi:10.1021/ja102267j [+]
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849

Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev., 41(2), 666-686. doi:10.1039/c1cs15078b

Wang, H., Casalongue, H. S., Liang, Y., & Dai, H. (2010). Ni(OH)2Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. Journal of the American Chemical Society, 132(21), 7472-7477. doi:10.1021/ja102267j

Zhao, X., Xu, S., Wang, L., Duan, X., & Zhang, F. (2010). Exchange-biased NiFe2O4/NiO nanocomposites derived from NiFe-layered double hydroxides as a single precursor. Nano Research, 3(3), 200-210. doi:10.1007/s12274-010-1023-3

Zhao, X., Zhang, F., Xu, S., Evans, D. G., & Duan, X. (2010). From Layered Double Hydroxides to ZnO-based Mixed Metal Oxides by Thermal Decomposition: Transformation Mechanism and UV-Blocking Properties of the Product. Chemistry of Materials, 22(13), 3933-3942. doi:10.1021/cm100383d

Das, B., Reddy, M. V., Krishnamoorthi, C., Tripathy, S., Mahendiran, R., Rao, G. V. S., & Chowdari, B. V. R. (2009). Carbothermal synthesis, spectral and magnetic characterization and Li-cyclability of the Mo-cluster compounds, LiYMo3O8 and Mn2Mo3O8. Electrochimica Acta, 54(12), 3360-3373. doi:10.1016/j.electacta.2008.12.049

Das, B., Reddy, M. V., Subba Rao, G. V., & Chowdari, B. V. R. (2007). Synthesis of Mo-cluster compound, LiHoMo3O8 by carbothermal reduction and its reactivity towards Li. Journal of Solid State Electrochemistry, 12(7-8), 953-959. doi:10.1007/s10008-007-0451-9

Reddy, M. V., Subba Rao, G. V., & Chowdari, B. V. R. (2010). Long-term cycling studies on 4V-cathode, lithium vanadium fluorophosphate. Journal of Power Sources, 195(17), 5768-5774. doi:10.1016/j.jpowsour.2010.03.032

Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11(2), 173-301. doi:10.1016/0920-5861(91)80068-k

Leroux, F., & Taviot-Guého, C. (2005). Fine tuning between organic and inorganic host structure: new trends in layered double hydroxide hybrid assemblies. Journal of Materials Chemistry, 15(35-36), 3628. doi:10.1039/b505014f

Abellán, G., Coronado, E., Martí-Gastaldo, C., Ribera, A., & Sánchez-Royo, J. F. (2012). Layered double hydroxide (LDH)–organic hybrids as precursors for low-temperature chemical synthesis of carbon nanoforms. Chemical Science, 3(5), 1481. doi:10.1039/c2sc01064j

Latorre-Sanchez, M., Atienzar, P., Abellán, G., Puche, M., Fornés, V., Ribera, A., & García, H. (2012). The synthesis of a hybrid graphene–nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon, 50(2), 518-525. doi:10.1016/j.carbon.2011.09.007

Wang, J., Fan, G., Wang, H., & Li, F. (2011). Synthesis, Characterization, and Catalytic Performance of Highly Dispersed Supported Nickel Catalysts from Ni–Al Layered Double Hydroxides. Industrial & Engineering Chemistry Research, 50(24), 13717-13726. doi:10.1021/ie2015087

Kooli, F., Rives, V., & Jones, W. (1997). Reduction of Ni2+−Al3+and Cu2+−Al3+Layered Double Hydroxides to Metallic Ni0and Cu0via Polyol Treatment. Chemistry of Materials, 9(10), 2231-2235. doi:10.1021/cm970391p

Nethravathi, C., Rajamathi, J. T., Ravishankar, N., Shivakumara, C., & Rajamathi, M. (2008). Graphite Oxide-Intercalated Anionic Clay and Its Decomposition to Graphene−Inorganic Material Nanocomposites. Langmuir, 24(15), 8240-8244. doi:10.1021/la8000027

Kovanda, F., Grygar, T., & Dorničák, V. (2003). Thermal behaviour of Ni–Mn layered double hydroxide and characterization of formed oxides. Solid State Sciences, 5(7), 1019-1026. doi:10.1016/s1293-2558(03)00129-8

Johnston-Peck, A. C., Wang, J., & Tracy, J. B. (2009). Synthesis and Structural and Magnetic Characterization of Ni(Core)/NiO(Shell) Nanoparticles. ACS Nano, 3(5), 1077-1084. doi:10.1021/nn900019x

Cordente, N., Respaud, M., Senocq, F., Casanove, M.-J., Amiens, C., & Chaudret, B. (2001). Synthesis and Magnetic Properties of Nickel Nanorods. Nano Letters, 1(10), 565-568. doi:10.1021/nl0100522

Jiao, J., Seraphin, S., Wang, X., & Withers, J. C. (1996). Preparation and properties of ferromagnetic carbon‐coated Fe, Co, and Ni nanoparticles. Journal of Applied Physics, 80(1), 103-108. doi:10.1063/1.362765

Wang, X., & Li, Y. (2002). Selected-Control Hydrothermal Synthesis of α- and β-MnO2Single Crystal Nanowires. Journal of the American Chemical Society, 124(12), 2880-2881. doi:10.1021/ja0177105

Ahmad, T., Ramanujachary, K. V., Lofland, S. E., & Ganguli, A. K. (2004). Nanorods of manganese oxalate: a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4). Journal of Materials Chemistry, 14(23), 3406. doi:10.1039/b409010a

Chen, S., Zhu, J., Wu, X., Han, Q., & Wang, X. (2010). Graphene Oxide−MnO2 Nanocomposites for Supercapacitors. ACS Nano, 4(5), 2822-2830. doi:10.1021/nn901311t

Zhong, K., Xia, X., Zhang, B., Li, H., Wang, Z., & Chen, L. (2010). MnO powder as anode active materials for lithium ion batteries. Journal of Power Sources, 195(10), 3300-3308. doi:10.1016/j.jpowsour.2009.11.133

[-]

This item appears in the following Collection(s)

Show full item record