Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849
Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev., 41(2), 666-686. doi:10.1039/c1cs15078b
Wang, H., Casalongue, H. S., Liang, Y., & Dai, H. (2010). Ni(OH)2Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. Journal of the American Chemical Society, 132(21), 7472-7477. doi:10.1021/ja102267j
[+]
Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6(3), 183-191. doi:10.1038/nmat1849
Huang, X., Qi, X., Boey, F., & Zhang, H. (2012). Graphene-based composites. Chem. Soc. Rev., 41(2), 666-686. doi:10.1039/c1cs15078b
Wang, H., Casalongue, H. S., Liang, Y., & Dai, H. (2010). Ni(OH)2Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. Journal of the American Chemical Society, 132(21), 7472-7477. doi:10.1021/ja102267j
Zhao, X., Xu, S., Wang, L., Duan, X., & Zhang, F. (2010). Exchange-biased NiFe2O4/NiO nanocomposites derived from NiFe-layered double hydroxides as a single precursor. Nano Research, 3(3), 200-210. doi:10.1007/s12274-010-1023-3
Zhao, X., Zhang, F., Xu, S., Evans, D. G., & Duan, X. (2010). From Layered Double Hydroxides to ZnO-based Mixed Metal Oxides by Thermal Decomposition: Transformation Mechanism and UV-Blocking Properties of the Product. Chemistry of Materials, 22(13), 3933-3942. doi:10.1021/cm100383d
Das, B., Reddy, M. V., Krishnamoorthi, C., Tripathy, S., Mahendiran, R., Rao, G. V. S., & Chowdari, B. V. R. (2009). Carbothermal synthesis, spectral and magnetic characterization and Li-cyclability of the Mo-cluster compounds, LiYMo3O8 and Mn2Mo3O8. Electrochimica Acta, 54(12), 3360-3373. doi:10.1016/j.electacta.2008.12.049
Das, B., Reddy, M. V., Subba Rao, G. V., & Chowdari, B. V. R. (2007). Synthesis of Mo-cluster compound, LiHoMo3O8 by carbothermal reduction and its reactivity towards Li. Journal of Solid State Electrochemistry, 12(7-8), 953-959. doi:10.1007/s10008-007-0451-9
Reddy, M. V., Subba Rao, G. V., & Chowdari, B. V. R. (2010). Long-term cycling studies on 4V-cathode, lithium vanadium fluorophosphate. Journal of Power Sources, 195(17), 5768-5774. doi:10.1016/j.jpowsour.2010.03.032
Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11(2), 173-301. doi:10.1016/0920-5861(91)80068-k
Leroux, F., & Taviot-Guého, C. (2005). Fine tuning between organic and inorganic host structure: new trends in layered double hydroxide hybrid assemblies. Journal of Materials Chemistry, 15(35-36), 3628. doi:10.1039/b505014f
Abellán, G., Coronado, E., Martí-Gastaldo, C., Ribera, A., & Sánchez-Royo, J. F. (2012). Layered double hydroxide (LDH)–organic hybrids as precursors for low-temperature chemical synthesis of carbon nanoforms. Chemical Science, 3(5), 1481. doi:10.1039/c2sc01064j
Latorre-Sanchez, M., Atienzar, P., Abellán, G., Puche, M., Fornés, V., Ribera, A., & García, H. (2012). The synthesis of a hybrid graphene–nickel/manganese mixed oxide and its performance in lithium-ion batteries. Carbon, 50(2), 518-525. doi:10.1016/j.carbon.2011.09.007
Wang, J., Fan, G., Wang, H., & Li, F. (2011). Synthesis, Characterization, and Catalytic Performance of Highly Dispersed Supported Nickel Catalysts from Ni–Al Layered Double Hydroxides. Industrial & Engineering Chemistry Research, 50(24), 13717-13726. doi:10.1021/ie2015087
Kooli, F., Rives, V., & Jones, W. (1997). Reduction of Ni2+−Al3+and Cu2+−Al3+Layered Double Hydroxides to Metallic Ni0and Cu0via Polyol Treatment. Chemistry of Materials, 9(10), 2231-2235. doi:10.1021/cm970391p
Nethravathi, C., Rajamathi, J. T., Ravishankar, N., Shivakumara, C., & Rajamathi, M. (2008). Graphite Oxide-Intercalated Anionic Clay and Its Decomposition to Graphene−Inorganic Material Nanocomposites. Langmuir, 24(15), 8240-8244. doi:10.1021/la8000027
Kovanda, F., Grygar, T., & Dorničák, V. (2003). Thermal behaviour of Ni–Mn layered double hydroxide and characterization of formed oxides. Solid State Sciences, 5(7), 1019-1026. doi:10.1016/s1293-2558(03)00129-8
Johnston-Peck, A. C., Wang, J., & Tracy, J. B. (2009). Synthesis and Structural and Magnetic Characterization of Ni(Core)/NiO(Shell) Nanoparticles. ACS Nano, 3(5), 1077-1084. doi:10.1021/nn900019x
Cordente, N., Respaud, M., Senocq, F., Casanove, M.-J., Amiens, C., & Chaudret, B. (2001). Synthesis and Magnetic Properties of Nickel Nanorods. Nano Letters, 1(10), 565-568. doi:10.1021/nl0100522
Jiao, J., Seraphin, S., Wang, X., & Withers, J. C. (1996). Preparation and properties of ferromagnetic carbon‐coated Fe, Co, and Ni nanoparticles. Journal of Applied Physics, 80(1), 103-108. doi:10.1063/1.362765
Wang, X., & Li, Y. (2002). Selected-Control Hydrothermal Synthesis of α- and β-MnO2Single Crystal Nanowires. Journal of the American Chemical Society, 124(12), 2880-2881. doi:10.1021/ja0177105
Ahmad, T., Ramanujachary, K. V., Lofland, S. E., & Ganguli, A. K. (2004). Nanorods of manganese oxalate: a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4). Journal of Materials Chemistry, 14(23), 3406. doi:10.1039/b409010a
Chen, S., Zhu, J., Wu, X., Han, Q., & Wang, X. (2010). Graphene Oxide−MnO2 Nanocomposites for Supercapacitors. ACS Nano, 4(5), 2822-2830. doi:10.1021/nn901311t
Zhong, K., Xia, X., Zhang, B., Li, H., Wang, Z., & Chen, L. (2010). MnO powder as anode active materials for lithium ion batteries. Journal of Power Sources, 195(10), 3300-3308. doi:10.1016/j.jpowsour.2009.11.133
[-]