Albanese, A. A., Bonet, J., & Ricker, W. J. (2010). <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>-semigroups and mean ergodic operators in a class of Fréchet spaces. Journal of Mathematical Analysis and Applications, 365(1), 142-157. doi:10.1016/j.jmaa.2009.10.014
Albanese, A. A., Bonet, J., & Ricker, W. J. (2011). Mean ergodic semigroups of operators. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 106(2), 299-319. doi:10.1007/s13398-011-0054-2
Albanese, A. A., Bonet, J., & Ricker, W. J. (2013). Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaestiones Mathematicae, 36(2), 253-290. doi:10.2989/16073606.2013.779978
[+]
Albanese, A. A., Bonet, J., & Ricker, W. J. (2010). <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>-semigroups and mean ergodic operators in a class of Fréchet spaces. Journal of Mathematical Analysis and Applications, 365(1), 142-157. doi:10.1016/j.jmaa.2009.10.014
Albanese, A. A., Bonet, J., & Ricker, W. J. (2011). Mean ergodic semigroups of operators. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 106(2), 299-319. doi:10.1007/s13398-011-0054-2
Albanese, A. A., Bonet, J., & Ricker, W. J. (2013). Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaestiones Mathematicae, 36(2), 253-290. doi:10.2989/16073606.2013.779978
Albanese, A. A., Bonet, J., & Ricker, W. J. (2013). Convergence of arithmetic means of operators in Fréchet spaces. Journal of Mathematical Analysis and Applications, 401(1), 160-173. doi:10.1016/j.jmaa.2012.11.060
Albanese, A. A., Bonet, J., & Ricker, W. J. (2014). Uniform mean ergodicity of $C_0$-semigroups\newline in a class of Fréchet spaces. Functiones et Approximatio Commentarii Mathematici, 50(2), 307-349. doi:10.7169/facm/2014.50.2.8
Domański, P., & Langenbruch, M. (2011). On the abstract Cauchy problem for operators in locally convex spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 106(2), 247-273. doi:10.1007/s13398-011-0052-4
Frerick, L., Jordá, E., Kalmes, T., & Wengenroth, J. (2014). Strongly continuous semigroups on some Fréchet spaces. Journal of Mathematical Analysis and Applications, 412(1), 121-124. doi:10.1016/j.jmaa.2013.10.053
B. Jacob S.-A. Wegner Asymptotics of solution equations beyond Banach spaces Semigroup Forum
Jacob, B., Wegner, S.-A., & Wintermayr, J. (2015). Desch-Schappacher perturbation of one-parameter semigroups on locally convex spaces. Mathematische Nachrichten, 288(8-9), 925-934. doi:10.1002/mana.201400116
Köthe, G. (1983). Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. doi:10.1007/978-3-642-64988-2
Köthe, G. (1979). Topological Vector Spaces II. Grundlehren der mathematischen Wissenschaften. doi:10.1007/978-1-4684-9409-9
KOMATSU, H. (1964). Semi-groups of operators in locally convex spaces. Journal of the Mathematical Society of Japan, 16(3), 230-262. doi:10.2969/jmsj/01630230
Kōmura, T. (1968). Semigroups of operators in locally convex spaces. Journal of Functional Analysis, 2(3), 258-296. doi:10.1016/0022-1236(68)90008-6
Lumer, G., & Phillips, R. S. (1961). Dissipative operators in a Banach space. Pacific Journal of Mathematics, 11(2), 679-698. doi:10.2140/pjm.1961.11.679
Miyadera, I. (1959). Semi-groups of operators in Fréchet space amd applications to partial differential equations. Tohoku Mathematical Journal, 11(2), 162-183. doi:10.2748/tmj/1178244580
Moscatelli, V. B. (1980). Fréchet Spaces without continuous Norms and without Bases. Bulletin of the London Mathematical Society, 12(1), 63-66. doi:10.1112/blms/12.1.63
Tyran-Kamińska, M. (2009). Ergodic theorems and perturbations of contraction semigroups. Studia Mathematica, 195(2), 147-155. doi:10.4064/sm195-2-4
S.-A. Wegner The growth bound for strongly continuous semigroups on Fréchet spaces Proc. Edinb. Math. Soc. (2) (to appear) 10.1017/S0013091515000310
[-]