- -

Dissipative operators and additive perturbations in locally convex spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dissipative operators and additive perturbations in locally convex spaces

Mostrar el registro completo del ítem

Albanese, AA.; Jornet Casanova, D. (2016). Dissipative operators and additive perturbations in locally convex spaces. Mathematische Nachrichten. 289(8-9):920-949. https://doi.org/10.1002/mana.201500150

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150301

Ficheros en el ítem

Metadatos del ítem

Título: Dissipative operators and additive perturbations in locally convex spaces
Autor: Albanese, Angela A. Jornet Casanova, David
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Let (A, D(A)) be a densely defined operator on a Banach space X. Characterizations of when (A, D(A)) generates a C-0-semigroup on X are known. The famous result of Lumer and Phillips states that it is so if and only ...[+]
Palabras clave: Equicontinuous semigroup , Dissipative operator , Additive perturbation , (Uniformly) mean ergodic operator , Quasi-Montel operator , Locally convex space
Derechos de uso: Reserva de todos los derechos
Fuente:
Mathematische Nachrichten. (issn: 0025-584X )
DOI: 10.1002/mana.201500150
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/mana.201500150
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2013-43540-P/ES/METODOS DEL ANALISIS FUNCIONAL Y TEORIA DE OPERADORES/
info:eu-repo/grantAgreement/UPV//PAID-06-12/
info:eu-repo/grantAgreement/GVA//ACOMP%2F2015%2F186/
Descripción: "This is the peer reviewed version of the following article: Albanese, Angela A., and David Jornet. 2015. Dissipative Operators and Additive Perturbations in Locally Convex Spaces. Mathematische Nachrichten 289 (8 9). Wiley: 920 49. doi:10.1002/mana.201500150, which has been published in final form at https://doi.org/10.1002/mana.201500150. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Agradecimientos:
The research of the second author was partially supported by MINECO of Spain, Project MTM2013-43540-P, by Programa de Apoyo a la Investigacion y Desarrollo de la UPV, PAID-06-12 and by Generalitat Valenciana ACOMP/2015/186.[+]
Tipo: Artículo

References

Albanese, A. A., Bonet, J., & Ricker, W. J. (2010). <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>-semigroups and mean ergodic operators in a class of Fréchet spaces. Journal of Mathematical Analysis and Applications, 365(1), 142-157. doi:10.1016/j.jmaa.2009.10.014

Albanese, A. A., Bonet, J., & Ricker, W. J. (2011). Mean ergodic semigroups of operators. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 106(2), 299-319. doi:10.1007/s13398-011-0054-2

Albanese, A. A., Bonet, J., & Ricker, W. J. (2013). Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaestiones Mathematicae, 36(2), 253-290. doi:10.2989/16073606.2013.779978 [+]
Albanese, A. A., Bonet, J., & Ricker, W. J. (2010). <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mi>C</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>-semigroups and mean ergodic operators in a class of Fréchet spaces. Journal of Mathematical Analysis and Applications, 365(1), 142-157. doi:10.1016/j.jmaa.2009.10.014

Albanese, A. A., Bonet, J., & Ricker, W. J. (2011). Mean ergodic semigroups of operators. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 106(2), 299-319. doi:10.1007/s13398-011-0054-2

Albanese, A. A., Bonet, J., & Ricker, W. J. (2013). Montel resolvents and uniformly mean ergodic semigroups of linear operators. Quaestiones Mathematicae, 36(2), 253-290. doi:10.2989/16073606.2013.779978

Albanese, A. A., Bonet, J., & Ricker, W. J. (2013). Convergence of arithmetic means of operators in Fréchet spaces. Journal of Mathematical Analysis and Applications, 401(1), 160-173. doi:10.1016/j.jmaa.2012.11.060

Albanese, A. A., Bonet, J., & Ricker, W. J. (2014). Uniform mean ergodicity of $C_0$-semigroups\newline in a class of Fréchet spaces. Functiones et Approximatio Commentarii Mathematici, 50(2), 307-349. doi:10.7169/facm/2014.50.2.8

Domański, P., & Langenbruch, M. (2011). On the abstract Cauchy problem for operators in locally convex spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 106(2), 247-273. doi:10.1007/s13398-011-0052-4

Frerick, L., Jordá, E., Kalmes, T., & Wengenroth, J. (2014). Strongly continuous semigroups on some Fréchet spaces. Journal of Mathematical Analysis and Applications, 412(1), 121-124. doi:10.1016/j.jmaa.2013.10.053

B. Jacob S.-A. Wegner Asymptotics of solution equations beyond Banach spaces Semigroup Forum

Jacob, B., Wegner, S.-A., & Wintermayr, J. (2015). Desch-Schappacher perturbation of one-parameter semigroups on locally convex spaces. Mathematische Nachrichten, 288(8-9), 925-934. doi:10.1002/mana.201400116

Köthe, G. (1983). Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. doi:10.1007/978-3-642-64988-2

Köthe, G. (1979). Topological Vector Spaces II. Grundlehren der mathematischen Wissenschaften. doi:10.1007/978-1-4684-9409-9

KOMATSU, H. (1964). Semi-groups of operators in locally convex spaces. Journal of the Mathematical Society of Japan, 16(3), 230-262. doi:10.2969/jmsj/01630230

Kōmura, T. (1968). Semigroups of operators in locally convex spaces. Journal of Functional Analysis, 2(3), 258-296. doi:10.1016/0022-1236(68)90008-6

Lumer, G., & Phillips, R. S. (1961). Dissipative operators in a Banach space. Pacific Journal of Mathematics, 11(2), 679-698. doi:10.2140/pjm.1961.11.679

Miyadera, I. (1959). Semi-groups of operators in Fréchet space amd applications to partial differential equations. Tohoku Mathematical Journal, 11(2), 162-183. doi:10.2748/tmj/1178244580

Moscatelli, V. B. (1980). Fréchet Spaces without continuous Norms and without Bases. Bulletin of the London Mathematical Society, 12(1), 63-66. doi:10.1112/blms/12.1.63

Tyran-Kamińska, M. (2009). Ergodic theorems and perturbations of contraction semigroups. Studia Mathematica, 195(2), 147-155. doi:10.4064/sm195-2-4

S.-A. Wegner The growth bound for strongly continuous semigroups on Fréchet spaces Proc. Edinb. Math. Soc. (2) (to appear) 10.1017/S0013091515000310

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem