- -

Thermal and electrical conductivity of melt mixed polycarbonate hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermal and electrical conductivity of melt mixed polycarbonate hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets

Mostrar el registro completo del ítem

Wegrzyn, M.; Ortega, A.; Benedito, A.; Giménez Torres, E. (2015). Thermal and electrical conductivity of melt mixed polycarbonate hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets. Journal of Applied Polymer Science. 132(37):42536-1-42536-8. https://doi.org/10.1002/app.42536

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150349

Ficheros en el ítem

Metadatos del ítem

Título: Thermal and electrical conductivity of melt mixed polycarbonate hybrid composites co-filled with multi-walled carbon nanotubes and graphene nanoplatelets
Autor: Wegrzyn, Marcin Ortega, Amaya Benedito, Adolfo Giménez Torres, Enrique
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] In this work, we present thermoplastic nanocomposites of polycarbonate (PC) matrix with hybrid nanofillers system formed by a melt-mixing approach. Various concentrations of multi-walled carbon nanotubes (MWCNT) and ...[+]
Palabras clave: Composites , Graphene and fullerenes , Mechanical properties , Nanotubes , Thermal properties
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Applied Polymer Science. (issn: 0021-8995 )
DOI: 10.1002/app.42536
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/app.42536
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/238363/EU/Marie Curie Initial Training Network for the tailored supply-chain development of the mechanical and electrical properties of CNT-filled composites/
Descripción: "This is the peer reviewed version of the following article: Wegrzyn, M., Ortega, A., Benedito, A., & Gimenez, E. (2015). Thermal and electrical conductivity of melt mixed polycarbonate hybrid composites co‐filled with multi‐walled carbon nanotubes and graphene nanoplatelets. Journal of Applied Polymer Science, 132(37), which has been published in final form at https://doi.org/10.1002/app.42536. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Agradecimientos:
This work is funded by the European Community's Seventh Framework Program (FP7-PEOPLE-ITN-2008) within the CONTACT project Marie Curie Fellowship under grant number 238363.
Tipo: Artículo

References

Su, D. S., & Schlögl, R. (2010). Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications. ChemSusChem, 3(2), 136-168. doi:10.1002/cssc.200900182

Yang, L., Liu, F., Xia, H., Qian, X., Shen, K., & Zhang, J. (2011). Improving the electrical conductivity of a carbon nanotube/polypropylene composite by vibration during injection-moulding. Carbon, 49(10), 3274-3283. doi:10.1016/j.carbon.2011.03.054

Singh, I. V., Tanaka, M., & Endo, M. (2007). Effect of interface on the thermal conductivity of carbon nanotube composites. International Journal of Thermal Sciences, 46(9), 842-847. doi:10.1016/j.ijthermalsci.2006.11.003 [+]
Su, D. S., & Schlögl, R. (2010). Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications. ChemSusChem, 3(2), 136-168. doi:10.1002/cssc.200900182

Yang, L., Liu, F., Xia, H., Qian, X., Shen, K., & Zhang, J. (2011). Improving the electrical conductivity of a carbon nanotube/polypropylene composite by vibration during injection-moulding. Carbon, 49(10), 3274-3283. doi:10.1016/j.carbon.2011.03.054

Singh, I. V., Tanaka, M., & Endo, M. (2007). Effect of interface on the thermal conductivity of carbon nanotube composites. International Journal of Thermal Sciences, 46(9), 842-847. doi:10.1016/j.ijthermalsci.2006.11.003

Kuan, H.-C., Ma, C.-C. M., Chang, W.-P., Yuen, S.-M., Wu, H.-H., & Lee, T.-M. (2005). Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Composites Science and Technology, 65(11-12), 1703-1710. doi:10.1016/j.compscitech.2005.02.017

Arasteh, R., Omidi, M., Rousta, A. H. A., & Kazerooni, H. (2011). A Study on Effect of Waviness on Mechanical Properties of Multi-Walled Carbon Nanotube/Epoxy Composites Using Modified Halpin–Tsai Theory. Journal of Macromolecular Science, Part B, 50(12), 2464-2480. doi:10.1080/00222348.2011.579868

Cai, D., Jin, J., Yusoh, K., Rafiq, R., & Song, M. (2012). High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Composites Science and Technology, 72(6), 702-707. doi:10.1016/j.compscitech.2012.01.020

Yu, D., & Dai, L. (2009). Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors. The Journal of Physical Chemistry Letters, 1(2), 467-470. doi:10.1021/jz9003137

Haslam, M. D., & Raeymaekers, B. (2013). A composite index to quantify dispersion of carbon nanotubes in polymer-based composite materials. Composites Part B: Engineering, 55, 16-21. doi:10.1016/j.compositesb.2013.05.038

Pötschke, P., Dudkin, S. M., & Alig, I. (2003). Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer, 44(17), 5023-5030. doi:10.1016/s0032-3861(03)00451-8

Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969

Sathyanarayana, S., Olowojoba, G., Weiss, P., Caglar, B., Pataki, B., Mikonsaari, I., … Henning, F. (2012). Compounding of MWCNTs with PS in a Twin-Screw Extruder with Varying Process Parameters: Morphology, Interfacial Behavior, Thermal Stability, Rheology, and Volume Resistivity. Macromolecular Materials and Engineering, 298(1), 89-105. doi:10.1002/mame.201200018

Ye, L., Wu, Q., & Qu, B. (2009). Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites. Polymer Degradation and Stability, 94(5), 751-756. doi:10.1016/j.polymdegradstab.2009.02.010

Kalaitzidou, K., Fukushima, H., & Drzal, L. T. (2007). Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon, 45(7), 1446-1452. doi:10.1016/j.carbon.2007.03.029

Mu, Q., Feng, S., & Diao, G. (2007). Thermal conductivity of silicone rubber filled with ZnO. Polymer Composites, 28(2), 125-130. doi:10.1002/pc.20276

Pötschke, P., Bhattacharyya, A. R., & Janke, A. (2004). Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion. European Polymer Journal, 40(1), 137-148. doi:10.1016/j.eurpolymj.2003.08.008

King, J. A., Barton, R. L., Hauser, R. A., & Keith, J. M. (2008). Synergistic effects of carbon fillers in electrically and thermally conductive liquid crystal polymer based resins. Polymer Composites, 29(4), 421-428. doi:10.1002/pc.20446

Hwang, Y., Kim, M., & Kim, J. (2013). Improvement of the mechanical properties and thermal conductivity of poly(ether-ether-ketone) with the addition of graphene oxide-carbon nanotube hybrid fillers. Composites Part A: Applied Science and Manufacturing, 55, 195-202. doi:10.1016/j.compositesa.2013.08.010

Babaei, H., Keblinski, P., & Khodadadi, J. M. (2013). Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene. International Journal of Heat and Mass Transfer, 58(1-2), 209-216. doi:10.1016/j.ijheatmasstransfer.2012.11.013

Yang, S.-Y., Lin, W.-N., Huang, Y.-L., Tien, H.-W., Wang, J.-Y., Ma, C.-C. M., … Wang, Y.-S. (2011). Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon, 49(3), 793-803. doi:10.1016/j.carbon.2010.10.014

Pascual, J., Peris, F., Boronat, T., Fenollar, O., & Balart, R. (2011). Study of the effects of multi-walled carbon nanotubes on mechanical performance and thermal stability of polypropylene. Polymer Engineering & Science, 52(4), 733-740. doi:10.1002/pen.22128

Yasin, T., Nisar, M., Shafiq, M., Nho, Y.-C., & Ahmad, R. (2013). Influence of sepiolite and electron beam irradiation on the structural and physicochemical properties of polyethylene/starch nanocomposites. Polymer Composites, 34(3), 408-416. doi:10.1002/pc.22431

Zhang, W. D., Shen, L., Phang, I. Y., & Liu, T. (2004). Carbon Nanotubes Reinforced Nylon-6 Composite Prepared by Simple Melt-Compounding. Macromolecules, 37(2), 256-259. doi:10.1021/ma035594f

Zhang, C., Tjiu, W. W., Liu, T., Lui, W. Y., Phang, I. Y., & Zhang, W.-D. (2011). Dramatically Enhanced Mechanical Performance of Nylon-6 Magnetic Composites with Nanostructured Hybrid One-Dimensional Carbon Nanotube−Two-Dimensional Clay Nanoplatelet Heterostructures. The Journal of Physical Chemistry B, 115(13), 3392-3399. doi:10.1021/jp112284k

Lin, J., Wang, L., & Chen, G. (2010). Modification of Graphene Platelets and their Tribological Properties as a Lubricant Additive. Tribology Letters, 41(1), 209-215. doi:10.1007/s11249-010-9702-5

Qiu, L., Yang, X., Gou, X., Yang, W., Ma, Z.-F., Wallace, G. G., & Li, D. (2010). Dispersing Carbon Nanotubes with Graphene Oxide in Water and Synergistic Effects between Graphene Derivatives. Chemistry - A European Journal, 16(35), 10653-10658. doi:10.1002/chem.201001771

Tian, L., Meziani, M. J., Lu, F., Kong, C. Y., Cao, L., Thorne, T. J., & Sun, Y.-P. (2010). Graphene Oxides for Homogeneous Dispersion of Carbon Nanotubes. ACS Applied Materials & Interfaces, 2(11), 3217-3222. doi:10.1021/am100687n

Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymer nanocomposites. Polymer, 52(1), 5-25. doi:10.1016/j.polymer.2010.11.042

Song, Y. S., & Youn, J. R. (2005). Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon, 43(7), 1378-1385. doi:10.1016/j.carbon.2005.01.007

Huang, H., Liu, C. H., Wu, Y., & Fan, S. (2005). Aligned Carbon Nanotube Composite Films for Thermal Management. Advanced Materials, 17(13), 1652-1656. doi:10.1002/adma.200500467

Shokrieh, M. M., Hosseinkhani, M. R., Naimi-Jamal, M. R., & Tourani, H. (2013). Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Polymer Testing, 32(1), 45-51. doi:10.1016/j.polymertesting.2012.09.001

Schiøtz , J. nd Dinesen , A. R. 2001 127

Hornbostel, B., Pötschke, P., Kotz, J., & Roth, S. (2008). Mechanical properties of triple composites of polycarbonate, single-walled carbon nanotubes and carbon fibres. Physica E: Low-dimensional Systems and Nanostructures, 40(7), 2434-2439. doi:10.1016/j.physe.2007.08.100

Gupta, T. K., Singh, B. P., Mathur, R. B., & Dhakate, S. R. (2014). Multi-walled carbon nanotube–graphene–polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale, 6(2), 842-851. doi:10.1039/c3nr04565j

Pan, M., Shi, X., Li, X., Hu, H., & Zhang, L. (2004). Morphology and properties of PVC/clay nanocomposites viain situ emulsion polymerization. Journal of Applied Polymer Science, 94(1), 277-286. doi:10.1002/app.20896

Wegrzyn, M., Juan, S., Benedito, A., & Giménez, E. (2013). The influence of injection molding parameters on electrical properties of PC/ABS-MWCNT nanocomposites. Journal of Applied Polymer Science, 130(3), 2152-2158. doi:10.1002/app.39412

Godavarti, S., & Karwe, M. (1997). Determination of Specific Mechanical Energy Distribution on a Twin-Screw Extruder. Journal of Agricultural Engineering Research, 67(4), 277-287. doi:10.1006/jaer.1997.0172

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem