Su, D. S., & Schlögl, R. (2010). Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications. ChemSusChem, 3(2), 136-168. doi:10.1002/cssc.200900182
Yang, L., Liu, F., Xia, H., Qian, X., Shen, K., & Zhang, J. (2011). Improving the electrical conductivity of a carbon nanotube/polypropylene composite by vibration during injection-moulding. Carbon, 49(10), 3274-3283. doi:10.1016/j.carbon.2011.03.054
Singh, I. V., Tanaka, M., & Endo, M. (2007). Effect of interface on the thermal conductivity of carbon nanotube composites. International Journal of Thermal Sciences, 46(9), 842-847. doi:10.1016/j.ijthermalsci.2006.11.003
[+]
Su, D. S., & Schlögl, R. (2010). Nanostructured Carbon and Carbon Nanocomposites for Electrochemical Energy Storage Applications. ChemSusChem, 3(2), 136-168. doi:10.1002/cssc.200900182
Yang, L., Liu, F., Xia, H., Qian, X., Shen, K., & Zhang, J. (2011). Improving the electrical conductivity of a carbon nanotube/polypropylene composite by vibration during injection-moulding. Carbon, 49(10), 3274-3283. doi:10.1016/j.carbon.2011.03.054
Singh, I. V., Tanaka, M., & Endo, M. (2007). Effect of interface on the thermal conductivity of carbon nanotube composites. International Journal of Thermal Sciences, 46(9), 842-847. doi:10.1016/j.ijthermalsci.2006.11.003
Kuan, H.-C., Ma, C.-C. M., Chang, W.-P., Yuen, S.-M., Wu, H.-H., & Lee, T.-M. (2005). Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Composites Science and Technology, 65(11-12), 1703-1710. doi:10.1016/j.compscitech.2005.02.017
Arasteh, R., Omidi, M., Rousta, A. H. A., & Kazerooni, H. (2011). A Study on Effect of Waviness on Mechanical Properties of Multi-Walled Carbon Nanotube/Epoxy Composites Using Modified Halpin–Tsai Theory. Journal of Macromolecular Science, Part B, 50(12), 2464-2480. doi:10.1080/00222348.2011.579868
Cai, D., Jin, J., Yusoh, K., Rafiq, R., & Song, M. (2012). High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Composites Science and Technology, 72(6), 702-707. doi:10.1016/j.compscitech.2012.01.020
Yu, D., & Dai, L. (2009). Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors. The Journal of Physical Chemistry Letters, 1(2), 467-470. doi:10.1021/jz9003137
Haslam, M. D., & Raeymaekers, B. (2013). A composite index to quantify dispersion of carbon nanotubes in polymer-based composite materials. Composites Part B: Engineering, 55, 16-21. doi:10.1016/j.compositesb.2013.05.038
Pötschke, P., Dudkin, S. M., & Alig, I. (2003). Dielectric spectroscopy on melt processed polycarbonate—multiwalled carbon nanotube composites. Polymer, 44(17), 5023-5030. doi:10.1016/s0032-3861(03)00451-8
Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., … Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286. doi:10.1038/nature04969
Sathyanarayana, S., Olowojoba, G., Weiss, P., Caglar, B., Pataki, B., Mikonsaari, I., … Henning, F. (2012). Compounding of MWCNTs with PS in a Twin-Screw Extruder with Varying Process Parameters: Morphology, Interfacial Behavior, Thermal Stability, Rheology, and Volume Resistivity. Macromolecular Materials and Engineering, 298(1), 89-105. doi:10.1002/mame.201200018
Ye, L., Wu, Q., & Qu, B. (2009). Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites. Polymer Degradation and Stability, 94(5), 751-756. doi:10.1016/j.polymdegradstab.2009.02.010
Kalaitzidou, K., Fukushima, H., & Drzal, L. T. (2007). Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon, 45(7), 1446-1452. doi:10.1016/j.carbon.2007.03.029
Mu, Q., Feng, S., & Diao, G. (2007). Thermal conductivity of silicone rubber filled with ZnO. Polymer Composites, 28(2), 125-130. doi:10.1002/pc.20276
Pötschke, P., Bhattacharyya, A. R., & Janke, A. (2004). Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion. European Polymer Journal, 40(1), 137-148. doi:10.1016/j.eurpolymj.2003.08.008
King, J. A., Barton, R. L., Hauser, R. A., & Keith, J. M. (2008). Synergistic effects of carbon fillers in electrically and thermally conductive liquid crystal polymer based resins. Polymer Composites, 29(4), 421-428. doi:10.1002/pc.20446
Hwang, Y., Kim, M., & Kim, J. (2013). Improvement of the mechanical properties and thermal conductivity of poly(ether-ether-ketone) with the addition of graphene oxide-carbon nanotube hybrid fillers. Composites Part A: Applied Science and Manufacturing, 55, 195-202. doi:10.1016/j.compositesa.2013.08.010
Babaei, H., Keblinski, P., & Khodadadi, J. M. (2013). Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene. International Journal of Heat and Mass Transfer, 58(1-2), 209-216. doi:10.1016/j.ijheatmasstransfer.2012.11.013
Yang, S.-Y., Lin, W.-N., Huang, Y.-L., Tien, H.-W., Wang, J.-Y., Ma, C.-C. M., … Wang, Y.-S. (2011). Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon, 49(3), 793-803. doi:10.1016/j.carbon.2010.10.014
Pascual, J., Peris, F., Boronat, T., Fenollar, O., & Balart, R. (2011). Study of the effects of multi-walled carbon nanotubes on mechanical performance and thermal stability of polypropylene. Polymer Engineering & Science, 52(4), 733-740. doi:10.1002/pen.22128
Yasin, T., Nisar, M., Shafiq, M., Nho, Y.-C., & Ahmad, R. (2013). Influence of sepiolite and electron beam irradiation on the structural and physicochemical properties of polyethylene/starch nanocomposites. Polymer Composites, 34(3), 408-416. doi:10.1002/pc.22431
Zhang, W. D., Shen, L., Phang, I. Y., & Liu, T. (2004). Carbon Nanotubes Reinforced Nylon-6 Composite Prepared by Simple Melt-Compounding. Macromolecules, 37(2), 256-259. doi:10.1021/ma035594f
Zhang, C., Tjiu, W. W., Liu, T., Lui, W. Y., Phang, I. Y., & Zhang, W.-D. (2011). Dramatically Enhanced Mechanical Performance of Nylon-6 Magnetic Composites with Nanostructured Hybrid One-Dimensional Carbon Nanotube−Two-Dimensional Clay Nanoplatelet Heterostructures. The Journal of Physical Chemistry B, 115(13), 3392-3399. doi:10.1021/jp112284k
Lin, J., Wang, L., & Chen, G. (2010). Modification of Graphene Platelets and their Tribological Properties as a Lubricant Additive. Tribology Letters, 41(1), 209-215. doi:10.1007/s11249-010-9702-5
Qiu, L., Yang, X., Gou, X., Yang, W., Ma, Z.-F., Wallace, G. G., & Li, D. (2010). Dispersing Carbon Nanotubes with Graphene Oxide in Water and Synergistic Effects between Graphene Derivatives. Chemistry - A European Journal, 16(35), 10653-10658. doi:10.1002/chem.201001771
Tian, L., Meziani, M. J., Lu, F., Kong, C. Y., Cao, L., Thorne, T. J., & Sun, Y.-P. (2010). Graphene Oxides for Homogeneous Dispersion of Carbon Nanotubes. ACS Applied Materials & Interfaces, 2(11), 3217-3222. doi:10.1021/am100687n
Potts, J. R., Dreyer, D. R., Bielawski, C. W., & Ruoff, R. S. (2011). Graphene-based polymer nanocomposites. Polymer, 52(1), 5-25. doi:10.1016/j.polymer.2010.11.042
Song, Y. S., & Youn, J. R. (2005). Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon, 43(7), 1378-1385. doi:10.1016/j.carbon.2005.01.007
Huang, H., Liu, C. H., Wu, Y., & Fan, S. (2005). Aligned Carbon Nanotube Composite Films for Thermal Management. Advanced Materials, 17(13), 1652-1656. doi:10.1002/adma.200500467
Shokrieh, M. M., Hosseinkhani, M. R., Naimi-Jamal, M. R., & Tourani, H. (2013). Nanoindentation and nanoscratch investigations on graphene-based nanocomposites. Polymer Testing, 32(1), 45-51. doi:10.1016/j.polymertesting.2012.09.001
Schiøtz , J. nd Dinesen , A. R. 2001 127
Hornbostel, B., Pötschke, P., Kotz, J., & Roth, S. (2008). Mechanical properties of triple composites of polycarbonate, single-walled carbon nanotubes and carbon fibres. Physica E: Low-dimensional Systems and Nanostructures, 40(7), 2434-2439. doi:10.1016/j.physe.2007.08.100
Gupta, T. K., Singh, B. P., Mathur, R. B., & Dhakate, S. R. (2014). Multi-walled carbon nanotube–graphene–polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale, 6(2), 842-851. doi:10.1039/c3nr04565j
Pan, M., Shi, X., Li, X., Hu, H., & Zhang, L. (2004). Morphology and properties of PVC/clay nanocomposites viain situ emulsion polymerization. Journal of Applied Polymer Science, 94(1), 277-286. doi:10.1002/app.20896
Wegrzyn, M., Juan, S., Benedito, A., & Giménez, E. (2013). The influence of injection molding parameters on electrical properties of PC/ABS-MWCNT nanocomposites. Journal of Applied Polymer Science, 130(3), 2152-2158. doi:10.1002/app.39412
Godavarti, S., & Karwe, M. (1997). Determination of Specific Mechanical Energy Distribution on a Twin-Screw Extruder. Journal of Agricultural Engineering Research, 67(4), 277-287. doi:10.1006/jaer.1997.0172
[-]