Dragincic, J., Korac, N., & Blagojevic, B. (2015). Group multi-criteria decision making (GMCDM) approach for selecting the most suitable table grape variety intended for organic viticulture. Computers and Electronics in Agriculture, 111, 194-202. doi:10.1016/j.compag.2014.12.023
Intrigliolo, D. S., Llacer, E., Revert, J., Esteve, M. D., Climent, M. D., Palau, D., & Gómez, I. (2014). Early defoliation reduces cluster compactness and improves grape composition in Mandó, an autochthonous cultivar of Vitis vinifera from southeastern Spain. Scientia Horticulturae, 167, 71-75. doi:10.1016/j.scienta.2013.12.036
Tello, J., Aguirrezábal, R., Hernáiz, S., Larreina, B., Montemayor, M. I., Vaquero, E., & Ibáñez, J. (2015). Multicultivar and multivariate study of the natural variation for grapevine bunch compactness. Australian Journal of Grape and Wine Research, 21(2), 277-289. doi:10.1111/ajgw.12121
[+]
Dragincic, J., Korac, N., & Blagojevic, B. (2015). Group multi-criteria decision making (GMCDM) approach for selecting the most suitable table grape variety intended for organic viticulture. Computers and Electronics in Agriculture, 111, 194-202. doi:10.1016/j.compag.2014.12.023
Intrigliolo, D. S., Llacer, E., Revert, J., Esteve, M. D., Climent, M. D., Palau, D., & Gómez, I. (2014). Early defoliation reduces cluster compactness and improves grape composition in Mandó, an autochthonous cultivar of Vitis vinifera from southeastern Spain. Scientia Horticulturae, 167, 71-75. doi:10.1016/j.scienta.2013.12.036
Tello, J., Aguirrezábal, R., Hernáiz, S., Larreina, B., Montemayor, M. I., Vaquero, E., & Ibáñez, J. (2015). Multicultivar and multivariate study of the natural variation for grapevine bunch compactness. Australian Journal of Grape and Wine Research, 21(2), 277-289. doi:10.1111/ajgw.12121
Vail, M. E. (1991). Grape Cluster Architecture and the Susceptibility of Berries toBotrytis cinerea. Phytopathology, 81(2), 188. doi:10.1094/phyto-81-188
Fermaud, M. (1998). Cultivar Susceptibility of Grape Berry Clusters to Larvae of Lobesia botrana (Lepidoptera: Tortricidae). Journal of Economic Entomology, 91(4), 974-980. doi:10.1093/jee/91.4.974
MAY, P. (2000). From bud to berry, with special reference to inflorescence and bunch morphology in Vitis vinifera L. Australian Journal of Grape and Wine Research, 6(2), 82-98. doi:10.1111/j.1755-0238.2000.tb00166.x
Molitor, D., Behr, M., Hoffmann, L., & Evers, D. (2012). Impact of Grape Cluster Division on Cluster Morphology and Bunch Rot Epidemic. American Journal of Enology and Viticulture, 63(4), 508-514. doi:10.5344/ajev.2012.12041
Roscher, R., Herzog, K., Kunkel, A., Kicherer, A., Töpfer, R., & Förstner, W. (2014). Automated image analysis framework for high-throughput determination of grapevine berry sizes using conditional random fields. Computers and Electronics in Agriculture, 100, 148-158. doi:10.1016/j.compag.2013.11.008
Houel, C., Martin-Magniette, M.-L., Nicolas, S. D., Lacombe, T., Le Cunff, L., Franck, D., … Adam-Blondon, A.-F. (2013). Genetic variability of berry size in the grapevine (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 19(2), 208-220. doi:10.1111/ajgw.12021
SHAVRUKOV, Y. N., DRY, I. B., & THOMAS, M. R. (2004). Inflorescence and bunch architecture development in Vitis vinifera L. Australian Journal of Grape and Wine Research, 10(2), 116-124. doi:10.1111/j.1755-0238.2004.tb00014.x
Moreda, G. P., Ortiz-Cañavate, J., García-Ramos, F. J., & Ruiz-Altisent, M. (2009). Non-destructive technologies for fruit and vegetable size determination – A review. Journal of Food Engineering, 92(2), 119-136. doi:10.1016/j.jfoodeng.2008.11.004
Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2010). Advances in Machine Vision Applications for Automatic Inspection and Quality Evaluation of Fruits and Vegetables. Food and Bioprocess Technology, 4(4), 487-504. doi:10.1007/s11947-010-0411-8
Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2011). Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment. Food and Bioprocess Technology, 5(4), 1121-1142. doi:10.1007/s11947-011-0725-1
Zhang, B., Huang, W., Li, J., Zhao, C., Fan, S., Wu, J., & Liu, C. (2014). Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Food Research International, 62, 326-343. doi:10.1016/j.foodres.2014.03.012
Tardaguila, J., Diago, M. P., Millan, B., Blasco, J., Cubero, S., & Aleixos, N. (2013). APPLICATIONS OF COMPUTER VISION TECHNIQUES IN VITICULTURE TO ASSESS CANOPY FEATURES, CLUSTER MORPHOLOGY AND BERRY SIZE. Acta Horticulturae, (978), 77-84. doi:10.17660/actahortic.2013.978.7
Diago, M. P., Tardaguila, J., Aleixos, N., Millan, B., Prats-Montalban, J. M., Cubero, S., & Blasco, J. (2014). Assessment of cluster yield components by image analysis. Journal of the Science of Food and Agriculture, 95(6), 1274-1282. doi:10.1002/jsfa.6819
Cubero, S., Diago, M. P., Blasco, J., Tardáguila, J., Millán, B., & Aleixos, N. (2014). A new method for pedicel/peduncle detection and size assessment of grapevine berries and other fruits by image analysis. Biosystems Engineering, 117, 62-72. doi:10.1016/j.biosystemseng.2013.06.007
Cubero, S., Diago, M. P., Blasco, J., Tardaguila, J., Prats-Montalbán, J. M., Ibáñez, J., … Aleixos, N. (2015). A new method for assessment of bunch compactness using automated image analysis. Australian Journal of Grape and Wine Research, 21(1), 101-109. doi:10.1111/ajgw.12118
Ivorra, E., Sánchez, A. J., Camarasa, J. G., Diago, M. P., & Tardaguila, J. (2015). Assessment of grape cluster yield components based on 3D descriptors using stereo vision. Food Control, 50, 273-282. doi:10.1016/j.foodcont.2014.09.004
Herrero-Huerta, M., González-Aguilera, D., Rodriguez-Gonzalvez, P., & Hernández-López, D. (2015). Vineyard yield estimation by automatic 3D bunch modelling in field conditions. Computers and Electronics in Agriculture, 110, 17-26. doi:10.1016/j.compag.2014.10.003
Schöler, F., & Steinhage, V. (2015). Automated 3D reconstruction of grape cluster architecture from sensor data for efficient phenotyping. Computers and Electronics in Agriculture, 114, 163-177. doi:10.1016/j.compag.2015.04.001
Omid, M., Khojastehnazhand, M., & Tabatabaeefar, A. (2010). Estimating volume and mass of citrus fruits by image processing technique. Journal of Food Engineering, 100(2), 315-321. doi:10.1016/j.jfoodeng.2010.04.015
Martin Bland, J., & Altman, D. (1986). STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT. The Lancet, 327(8476), 307-310. doi:10.1016/s0140-6736(86)90837-8
Paulus, S., Behmann, J., Mahlein, A.-K., Plümer, L., & Kuhlmann, H. (2014). Low-Cost 3D Systems: Suitable Tools for Plant Phenotyping. Sensors, 14(2), 3001-3018. doi:10.3390/s140203001
[-]