- -

Application of 2D and 3D image technologies to characterize morphological attributes of grapevine clusters

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Application of 2D and 3D image technologies to characterize morphological attributes of grapevine clusters

Mostrar el registro completo del ítem

Tello, J.; Cubero, S.; Blasco Ivars, J.; Tardaguila, J.; Aleixos Borrás, MN.; Ibanez, J. (2016). Application of 2D and 3D image technologies to characterize morphological attributes of grapevine clusters. Journal of the Science of Food and Agriculture. 96:4575-4583. https://doi.org/10.1002/jsfa.7675

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/150640

Ficheros en el ítem

Metadatos del ítem

Título: Application of 2D and 3D image technologies to characterize morphological attributes of grapevine clusters
Autor: Tello, Javier Cubero, Sergio BLASCO IVARS, JOSE Tardaguila, Javier Aleixos Borrás, María Nuria Ibanez, Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica
Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària
Fecha difusión:
Resumen:
[EN] BACKGROUND: Grapevine cluster morphology influences the quality and commercial value of wine and table grapes. It is routinely evaluated by subjective and inaccurate methods that do not meet the requirements set by ...[+]
Palabras clave: Vitis vinifera L , Cluster size , Cluster compactness , Cluster shape , Machine vision
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of the Science of Food and Agriculture. (issn: 0022-5142 )
DOI: 10.1002/jsfa.7675
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/jsfa.7675
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//AGL2010-15694/ES/ESTUDIO GENETICO Y MORFOLOGICO DE LA COMPACIDAD DEL RACIMO DE VID MEDIANTE LA CARACTERIZACION FENOTIPICA Y EL ANALISIS GENOMICO DE LA VARIACION NATURAL/
info:eu-repo/grantAgreement/MICINN//BES-2011-047041/ES/BES-2011-047041/
info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-03/ES/Nuevas técnicas de inspección basadas en visión por computador multiespectral para la estimación de propiedades y determinación automática de la calidad y sanidad de la producción agroalimentaria en líneas de inspección y manipulación (VIS-DACSA)/
Agradecimientos:
We acknowledge R. Aguirrezabal, B. Larreina and M.I. Montemayor for their technical assistance. This work was supported by the Spanish Ministerio de Economia y Competitividad (MINECO) through project AGL2010-15694 and the ...[+]
Tipo: Artículo

References

Dragincic, J., Korac, N., & Blagojevic, B. (2015). Group multi-criteria decision making (GMCDM) approach for selecting the most suitable table grape variety intended for organic viticulture. Computers and Electronics in Agriculture, 111, 194-202. doi:10.1016/j.compag.2014.12.023

Intrigliolo, D. S., Llacer, E., Revert, J., Esteve, M. D., Climent, M. D., Palau, D., & Gómez, I. (2014). Early defoliation reduces cluster compactness and improves grape composition in Mandó, an autochthonous cultivar of Vitis vinifera from southeastern Spain. Scientia Horticulturae, 167, 71-75. doi:10.1016/j.scienta.2013.12.036

Tello, J., Aguirrezábal, R., Hernáiz, S., Larreina, B., Montemayor, M. I., Vaquero, E., & Ibáñez, J. (2015). Multicultivar and multivariate study of the natural variation for grapevine bunch compactness. Australian Journal of Grape and Wine Research, 21(2), 277-289. doi:10.1111/ajgw.12121 [+]
Dragincic, J., Korac, N., & Blagojevic, B. (2015). Group multi-criteria decision making (GMCDM) approach for selecting the most suitable table grape variety intended for organic viticulture. Computers and Electronics in Agriculture, 111, 194-202. doi:10.1016/j.compag.2014.12.023

Intrigliolo, D. S., Llacer, E., Revert, J., Esteve, M. D., Climent, M. D., Palau, D., & Gómez, I. (2014). Early defoliation reduces cluster compactness and improves grape composition in Mandó, an autochthonous cultivar of Vitis vinifera from southeastern Spain. Scientia Horticulturae, 167, 71-75. doi:10.1016/j.scienta.2013.12.036

Tello, J., Aguirrezábal, R., Hernáiz, S., Larreina, B., Montemayor, M. I., Vaquero, E., & Ibáñez, J. (2015). Multicultivar and multivariate study of the natural variation for grapevine bunch compactness. Australian Journal of Grape and Wine Research, 21(2), 277-289. doi:10.1111/ajgw.12121

Vail, M. E. (1991). Grape Cluster Architecture and the Susceptibility of Berries toBotrytis cinerea. Phytopathology, 81(2), 188. doi:10.1094/phyto-81-188

Fermaud, M. (1998). Cultivar Susceptibility of Grape Berry Clusters to Larvae of Lobesia botrana (Lepidoptera: Tortricidae). Journal of Economic Entomology, 91(4), 974-980. doi:10.1093/jee/91.4.974

MAY, P. (2000). From bud to berry, with special reference to inflorescence and bunch morphology in Vitis vinifera L. Australian Journal of Grape and Wine Research, 6(2), 82-98. doi:10.1111/j.1755-0238.2000.tb00166.x

Molitor, D., Behr, M., Hoffmann, L., & Evers, D. (2012). Impact of Grape Cluster Division on Cluster Morphology and Bunch Rot Epidemic. American Journal of Enology and Viticulture, 63(4), 508-514. doi:10.5344/ajev.2012.12041

Roscher, R., Herzog, K., Kunkel, A., Kicherer, A., Töpfer, R., & Förstner, W. (2014). Automated image analysis framework for high-throughput determination of grapevine berry sizes using conditional random fields. Computers and Electronics in Agriculture, 100, 148-158. doi:10.1016/j.compag.2013.11.008

Houel, C., Martin-Magniette, M.-L., Nicolas, S. D., Lacombe, T., Le Cunff, L., Franck, D., … Adam-Blondon, A.-F. (2013). Genetic variability of berry size in the grapevine (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 19(2), 208-220. doi:10.1111/ajgw.12021

SHAVRUKOV, Y. N., DRY, I. B., & THOMAS, M. R. (2004). Inflorescence and bunch architecture development in Vitis vinifera L. Australian Journal of Grape and Wine Research, 10(2), 116-124. doi:10.1111/j.1755-0238.2004.tb00014.x

Moreda, G. P., Ortiz-Cañavate, J., García-Ramos, F. J., & Ruiz-Altisent, M. (2009). Non-destructive technologies for fruit and vegetable size determination – A review. Journal of Food Engineering, 92(2), 119-136. doi:10.1016/j.jfoodeng.2008.11.004

Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2010). Advances in Machine Vision Applications for Automatic Inspection and Quality Evaluation of Fruits and Vegetables. Food and Bioprocess Technology, 4(4), 487-504. doi:10.1007/s11947-010-0411-8

Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2011). Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment. Food and Bioprocess Technology, 5(4), 1121-1142. doi:10.1007/s11947-011-0725-1

Zhang, B., Huang, W., Li, J., Zhao, C., Fan, S., Wu, J., & Liu, C. (2014). Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Food Research International, 62, 326-343. doi:10.1016/j.foodres.2014.03.012

Tardaguila, J., Diago, M. P., Millan, B., Blasco, J., Cubero, S., & Aleixos, N. (2013). APPLICATIONS OF COMPUTER VISION TECHNIQUES IN VITICULTURE TO ASSESS CANOPY FEATURES, CLUSTER MORPHOLOGY AND BERRY SIZE. Acta Horticulturae, (978), 77-84. doi:10.17660/actahortic.2013.978.7

Diago, M. P., Tardaguila, J., Aleixos, N., Millan, B., Prats-Montalban, J. M., Cubero, S., & Blasco, J. (2014). Assessment of cluster yield components by image analysis. Journal of the Science of Food and Agriculture, 95(6), 1274-1282. doi:10.1002/jsfa.6819

Cubero, S., Diago, M. P., Blasco, J., Tardáguila, J., Millán, B., & Aleixos, N. (2014). A new method for pedicel/peduncle detection and size assessment of grapevine berries and other fruits by image analysis. Biosystems Engineering, 117, 62-72. doi:10.1016/j.biosystemseng.2013.06.007

Cubero, S., Diago, M. P., Blasco, J., Tardaguila, J., Prats-Montalbán, J. M., Ibáñez, J., … Aleixos, N. (2015). A new method for assessment of bunch compactness using automated image analysis. Australian Journal of Grape and Wine Research, 21(1), 101-109. doi:10.1111/ajgw.12118

Ivorra, E., Sánchez, A. J., Camarasa, J. G., Diago, M. P., & Tardaguila, J. (2015). Assessment of grape cluster yield components based on 3D descriptors using stereo vision. Food Control, 50, 273-282. doi:10.1016/j.foodcont.2014.09.004

Herrero-Huerta, M., González-Aguilera, D., Rodriguez-Gonzalvez, P., & Hernández-López, D. (2015). Vineyard yield estimation by automatic 3D bunch modelling in field conditions. Computers and Electronics in Agriculture, 110, 17-26. doi:10.1016/j.compag.2014.10.003

Schöler, F., & Steinhage, V. (2015). Automated 3D reconstruction of grape cluster architecture from sensor data for efficient phenotyping. Computers and Electronics in Agriculture, 114, 163-177. doi:10.1016/j.compag.2015.04.001

Omid, M., Khojastehnazhand, M., & Tabatabaeefar, A. (2010). Estimating volume and mass of citrus fruits by image processing technique. Journal of Food Engineering, 100(2), 315-321. doi:10.1016/j.jfoodeng.2010.04.015

Martin Bland, J., & Altman, D. (1986). STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT. The Lancet, 327(8476), 307-310. doi:10.1016/s0140-6736(86)90837-8

Paulus, S., Behmann, J., Mahlein, A.-K., Plümer, L., & Kuhlmann, H. (2014). Low-Cost 3D Systems: Suitable Tools for Plant Phenotyping. Sensors, 14(2), 3001-3018. doi:10.3390/s140203001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem