Mostrar el registro sencillo del ítem
dc.contributor.author | Tello, Javier | es_ES |
dc.contributor.author | Cubero, Sergio | es_ES |
dc.contributor.author | BLASCO IVARS, JOSE | es_ES |
dc.contributor.author | Tardaguila, Javier | es_ES |
dc.contributor.author | Aleixos Borrás, María Nuria | es_ES |
dc.contributor.author | Ibanez, Javier | es_ES |
dc.date.accessioned | 2020-09-24T12:29:03Z | |
dc.date.available | 2020-09-24T12:29:03Z | |
dc.date.issued | 2016-10 | es_ES |
dc.identifier.issn | 0022-5142 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/150640 | |
dc.description.abstract | [EN] BACKGROUND: Grapevine cluster morphology influences the quality and commercial value of wine and table grapes. It is routinely evaluated by subjective and inaccurate methods that do not meet the requirements set by the food industry. Novel two-dimensional (2D) and three-dimensional (3D) machine vision technologies emerge as promising tools for its automatic and fast evaluation. RESULTS: The automatic evaluation of cluster length, width and elongation was successfully achieved by the analysis of 2D images, significant and strong correlations with the manual methods being found (r = 0.959, 0.861 and 0.852, respectively). The classification of clusters according to their shape can be achieved by evaluating their conicity in different sections of the cluster. The geometric reconstruction of the morphological volume of the cluster from 2D features worked better than the direct 3D laser scanning system, showing a high correlation (r = 0.956) with the manual approach (water displacement method). In addition, we constructed and validated a simple linear regression model for cluster compactness estimation. It showed a high predictive capacity for both the training and validation subsets of clusters (R2 = 84.5 and 71.1%, respectively). CONCLUSION: The methodologies proposed in this work provide continuous and accurate data for the fast and objective characterisation of cluster morphology. © 2016 Society of Chemical Industry | es_ES |
dc.description.sponsorship | We acknowledge R. Aguirrezabal, B. Larreina and M.I. Montemayor for their technical assistance. This work was supported by the Spanish Ministerio de Economia y Competitividad (MINECO) through project AGL2010-15694 and the Instituto Nacional de Investigation y Tecnologia Agraria y Alimentaria (INIA) through projects RTA2012-00062-004-01 and RTA2012-00062-004-03 with the support of European FEDER funds. Javier Tello acknowledges the MINECO for his predoctoral fellowship (BES-2011-047041) | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Journal of the Science of Food and Agriculture | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Vitis vinifera L | es_ES |
dc.subject | Cluster size | es_ES |
dc.subject | Cluster compactness | es_ES |
dc.subject | Cluster shape | es_ES |
dc.subject | Machine vision | es_ES |
dc.subject.classification | EXPRESION GRAFICA EN LA INGENIERIA | es_ES |
dc.title | Application of 2D and 3D image technologies to characterize morphological attributes of grapevine clusters | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/jsfa.7675 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//AGL2010-15694/ES/ESTUDIO GENETICO Y MORFOLOGICO DE LA COMPACIDAD DEL RACIMO DE VID MEDIANTE LA CARACTERIZACION FENOTIPICA Y EL ANALISIS GENOMICO DE LA VARIACION NATURAL/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BES-2011-047041/ES/BES-2011-047041/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-03/ES/Nuevas técnicas de inspección basadas en visión por computador multiespectral para la estimación de propiedades y determinación automática de la calidad y sanidad de la producción agroalimentaria en líneas de inspección y manipulación (VIS-DACSA)/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària | es_ES |
dc.description.bibliographicCitation | Tello, J.; Cubero, S.; Blasco Ivars, J.; Tardaguila, J.; Aleixos Borrás, MN.; Ibanez, J. (2016). Application of 2D and 3D image technologies to characterize morphological attributes of grapevine clusters. Journal of the Science of Food and Agriculture. 96:4575-4583. https://doi.org/10.1002/jsfa.7675 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/jsfa.7675 | es_ES |
dc.description.upvformatpinicio | 4575 | es_ES |
dc.description.upvformatpfin | 4583 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 96 | es_ES |
dc.identifier.pmid | 26910811 | es_ES |
dc.relation.pasarela | S\303233 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.description.references | Dragincic, J., Korac, N., & Blagojevic, B. (2015). Group multi-criteria decision making (GMCDM) approach for selecting the most suitable table grape variety intended for organic viticulture. Computers and Electronics in Agriculture, 111, 194-202. doi:10.1016/j.compag.2014.12.023 | es_ES |
dc.description.references | Intrigliolo, D. S., Llacer, E., Revert, J., Esteve, M. D., Climent, M. D., Palau, D., & Gómez, I. (2014). Early defoliation reduces cluster compactness and improves grape composition in Mandó, an autochthonous cultivar of Vitis vinifera from southeastern Spain. Scientia Horticulturae, 167, 71-75. doi:10.1016/j.scienta.2013.12.036 | es_ES |
dc.description.references | Tello, J., Aguirrezábal, R., Hernáiz, S., Larreina, B., Montemayor, M. I., Vaquero, E., & Ibáñez, J. (2015). Multicultivar and multivariate study of the natural variation for grapevine bunch compactness. Australian Journal of Grape and Wine Research, 21(2), 277-289. doi:10.1111/ajgw.12121 | es_ES |
dc.description.references | Vail, M. E. (1991). Grape Cluster Architecture and the Susceptibility of Berries toBotrytis cinerea. Phytopathology, 81(2), 188. doi:10.1094/phyto-81-188 | es_ES |
dc.description.references | Fermaud, M. (1998). Cultivar Susceptibility of Grape Berry Clusters to Larvae of Lobesia botrana (Lepidoptera: Tortricidae). Journal of Economic Entomology, 91(4), 974-980. doi:10.1093/jee/91.4.974 | es_ES |
dc.description.references | MAY, P. (2000). From bud to berry, with special reference to inflorescence and bunch morphology in Vitis vinifera L. Australian Journal of Grape and Wine Research, 6(2), 82-98. doi:10.1111/j.1755-0238.2000.tb00166.x | es_ES |
dc.description.references | Molitor, D., Behr, M., Hoffmann, L., & Evers, D. (2012). Impact of Grape Cluster Division on Cluster Morphology and Bunch Rot Epidemic. American Journal of Enology and Viticulture, 63(4), 508-514. doi:10.5344/ajev.2012.12041 | es_ES |
dc.description.references | Roscher, R., Herzog, K., Kunkel, A., Kicherer, A., Töpfer, R., & Förstner, W. (2014). Automated image analysis framework for high-throughput determination of grapevine berry sizes using conditional random fields. Computers and Electronics in Agriculture, 100, 148-158. doi:10.1016/j.compag.2013.11.008 | es_ES |
dc.description.references | Houel, C., Martin-Magniette, M.-L., Nicolas, S. D., Lacombe, T., Le Cunff, L., Franck, D., … Adam-Blondon, A.-F. (2013). Genetic variability of berry size in the grapevine (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 19(2), 208-220. doi:10.1111/ajgw.12021 | es_ES |
dc.description.references | SHAVRUKOV, Y. N., DRY, I. B., & THOMAS, M. R. (2004). Inflorescence and bunch architecture development in Vitis vinifera L. Australian Journal of Grape and Wine Research, 10(2), 116-124. doi:10.1111/j.1755-0238.2004.tb00014.x | es_ES |
dc.description.references | Moreda, G. P., Ortiz-Cañavate, J., García-Ramos, F. J., & Ruiz-Altisent, M. (2009). Non-destructive technologies for fruit and vegetable size determination – A review. Journal of Food Engineering, 92(2), 119-136. doi:10.1016/j.jfoodeng.2008.11.004 | es_ES |
dc.description.references | Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2010). Advances in Machine Vision Applications for Automatic Inspection and Quality Evaluation of Fruits and Vegetables. Food and Bioprocess Technology, 4(4), 487-504. doi:10.1007/s11947-010-0411-8 | es_ES |
dc.description.references | Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2011). Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment. Food and Bioprocess Technology, 5(4), 1121-1142. doi:10.1007/s11947-011-0725-1 | es_ES |
dc.description.references | Zhang, B., Huang, W., Li, J., Zhao, C., Fan, S., Wu, J., & Liu, C. (2014). Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Food Research International, 62, 326-343. doi:10.1016/j.foodres.2014.03.012 | es_ES |
dc.description.references | Tardaguila, J., Diago, M. P., Millan, B., Blasco, J., Cubero, S., & Aleixos, N. (2013). APPLICATIONS OF COMPUTER VISION TECHNIQUES IN VITICULTURE TO ASSESS CANOPY FEATURES, CLUSTER MORPHOLOGY AND BERRY SIZE. Acta Horticulturae, (978), 77-84. doi:10.17660/actahortic.2013.978.7 | es_ES |
dc.description.references | Diago, M. P., Tardaguila, J., Aleixos, N., Millan, B., Prats-Montalban, J. M., Cubero, S., & Blasco, J. (2014). Assessment of cluster yield components by image analysis. Journal of the Science of Food and Agriculture, 95(6), 1274-1282. doi:10.1002/jsfa.6819 | es_ES |
dc.description.references | Cubero, S., Diago, M. P., Blasco, J., Tardáguila, J., Millán, B., & Aleixos, N. (2014). A new method for pedicel/peduncle detection and size assessment of grapevine berries and other fruits by image analysis. Biosystems Engineering, 117, 62-72. doi:10.1016/j.biosystemseng.2013.06.007 | es_ES |
dc.description.references | Cubero, S., Diago, M. P., Blasco, J., Tardaguila, J., Prats-Montalbán, J. M., Ibáñez, J., … Aleixos, N. (2015). A new method for assessment of bunch compactness using automated image analysis. Australian Journal of Grape and Wine Research, 21(1), 101-109. doi:10.1111/ajgw.12118 | es_ES |
dc.description.references | Ivorra, E., Sánchez, A. J., Camarasa, J. G., Diago, M. P., & Tardaguila, J. (2015). Assessment of grape cluster yield components based on 3D descriptors using stereo vision. Food Control, 50, 273-282. doi:10.1016/j.foodcont.2014.09.004 | es_ES |
dc.description.references | Herrero-Huerta, M., González-Aguilera, D., Rodriguez-Gonzalvez, P., & Hernández-López, D. (2015). Vineyard yield estimation by automatic 3D bunch modelling in field conditions. Computers and Electronics in Agriculture, 110, 17-26. doi:10.1016/j.compag.2014.10.003 | es_ES |
dc.description.references | Schöler, F., & Steinhage, V. (2015). Automated 3D reconstruction of grape cluster architecture from sensor data for efficient phenotyping. Computers and Electronics in Agriculture, 114, 163-177. doi:10.1016/j.compag.2015.04.001 | es_ES |
dc.description.references | Omid, M., Khojastehnazhand, M., & Tabatabaeefar, A. (2010). Estimating volume and mass of citrus fruits by image processing technique. Journal of Food Engineering, 100(2), 315-321. doi:10.1016/j.jfoodeng.2010.04.015 | es_ES |
dc.description.references | Martin Bland, J., & Altman, D. (1986). STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT. The Lancet, 327(8476), 307-310. doi:10.1016/s0140-6736(86)90837-8 | es_ES |
dc.description.references | Paulus, S., Behmann, J., Mahlein, A.-K., Plümer, L., & Kuhlmann, H. (2014). Low-Cost 3D Systems: Suitable Tools for Plant Phenotyping. Sensors, 14(2), 3001-3018. doi:10.3390/s140203001 | es_ES |