Mostrar el registro sencillo del ítem
dc.contributor.author | Miranda-Vega, J. E. | es_ES |
dc.contributor.author | Rivas-López, M. | es_ES |
dc.contributor.author | Flores-Fuentes, W. | es_ES |
dc.contributor.author | Sergiyenko, O. | es_ES |
dc.contributor.author | Lindner, L. | es_ES |
dc.contributor.author | Rodríguez-Quiñonez, J. C. | es_ES |
dc.date.accessioned | 2020-10-05T11:03:57Z | |
dc.date.available | 2020-10-05T11:03:57Z | |
dc.date.issued | 2020-09-30 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/151126 | |
dc.description.abstract | [ES] Este artículo da seguimiento a previas experimentaciones actualmente publicadas acerca de la minimización de ruido ópticoeléctrico en los sistemas de barrido óptico OSS (en inglés, Optical Scanning Systems), implementando técnicas computacionales para el reconocimiento de los patrones que se generan de cada fuente de referencia y que son utilizadas para indicar una coordenada que el OSS monitoreará. Técnicas como análisis linear discriminante LDA (en inglés, Linear Discriminant Analysis) y regresión lineal LR (en inglés, Linear Regression) fueron implementadas para discriminar las señales causadas por otras fuentes distintas a las de referencia. Para aumentar la eficiencia de estos modelos fueron implementados codificación predictiva lineal LPC (en inglés, Linear Predictive Coding) y Cuantiles como extractores de características. Los resultados fueron alentadores con tasas de reconocimiento mayores al 91.2 %, alcanzando en algunos casos una exactitud del 100 %. | es_ES |
dc.description.abstract | [EN] This paper is a follow-up to previous researches already published regarding the minimization of optical-electrical noise in optical scanning systems OSS, by the implementation of computational techniques for pattern recognition generated by each reference source used to indicate a coordinate that the OSS will be monitoring. Techniques such as linear discriminant analysis LDA and linear regression LR were implemented in order to discriminate the signals caused by other sources different to the references. In order to enhance the efficiency of these models was implemented linear predictive coding LPC and quantiles as features extractors. The results were encouraging with rates of recognition greater than 91.2 %, reaching in some cases an accuracy of 100 %. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Analysis and treatment of signals | es_ES |
dc.subject | Sensors and virtual instruments | es_ES |
dc.subject | Noise | es_ES |
dc.subject | Modulation | es_ES |
dc.subject | 3D stereo vision | es_ES |
dc.subject | Análisis y tratamiento de señales | es_ES |
dc.subject | Sensores e instrumentos virtuales | es_ES |
dc.subject | Ruido | es_ES |
dc.subject | Modulación | es_ES |
dc.subject | Visión 3D y estéreo | es_ES |
dc.title | Reconocimiento de patrones aplicando LDA y LR a señales optoelectrónicas de sistemas de barrido óptico | es_ES |
dc.title.alternative | Pattern recognition applying LDA and LR to optoelectronic signals of optical scanning systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2020.12385 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Miranda-Vega, JE.; Rivas-López, M.; Flores-Fuentes, W.; Sergiyenko, O.; Lindner, L.; Rodríguez-Quiñonez, JC. (2020). Reconocimiento de patrones aplicando LDA y LR a señales optoelectrónicas de sistemas de barrido óptico. Revista Iberoamericana de Automática e Informática industrial. 17(4):401-411. https://doi.org/10.4995/riai.2020.12385 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2020.12385 | es_ES |
dc.description.upvformatpinicio | 401 | es_ES |
dc.description.upvformatpfin | 411 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\12385 | es_ES |
dc.description.references | Brooks, D. R., Mims III, F. M., 2001. Development of an inexpensive handheld led-based sun photometer for the globe program. Journal of Geophysical Research: Atmospheres 106 (D5), 4733-4740. https://doi.org/10.1029/2000JD900545 | es_ES |
dc.description.references | Cervantes, J., Taltempa, J., Lamont, F. G., Castilla, J. S. R., Rendon, A. Y., Jali- li, L. D., 2017. Análisis comparativo de las técnicas utilizadas en un sistema de reconocimiento de hojas de planta. Revista Iberoamericana de Automática e Informática industrial 14 (1), 104-114. https://doi.org/10.1016/j.riai.2016.09.005 | es_ES |
dc.description.references | Cheng, P., John, W., Zheng, W., 2002. Large structure health dynamic monito- ring using gps technology. In: FIG XXII International Congress, Washing- ton, DC USA. pp. 1-10. | es_ES |
dc.description.references | Dave, N., 2013. Feature extraction methods lpc, plp and mfcc in speech recog- nition. International journal for advance research in engineering and techno- logy 1 (6), 1-4. | es_ES |
dc.description.references | Di Sante, R., 2015. Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications. Sensors 15 (8), 18666-18713. https://www.mdpi.com/1424-8220/15/8/18666 , https://doi.org/10.3390/s150818666 | es_ES |
dc.description.references | Doebling, S., Farrar, C., Prime, M., Shevitz, D., 5 1996. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review. Report. https://doi.org/10.2172/249299 | es_ES |
dc.description.references | Feng, D., Feng, M. Q., 2017. Experimental validation of cost-effective vision- based structural health monitoring. Mechanical Systems and Signal Processing 88, 199-211. https://doi.org/10.1016/j.ymssp.2016.11.021 | es_ES |
dc.description.references | Flores-Fuentes, W., López, M., Sergiyenko, O., González-Navarro, F. F., Rivera-Castillo, J., Hernandez-Balbuena, D., Rodríguez-Quiñonez, J., 2014. Combined application of power spectrum centroid and support vector ma- chines for measurement improvement in optical scanning systems. Signal Processing 98, 37-51. https://doi.org/10.1016/j.sigpro.2013.11.008 | es_ES |
dc.description.references | Flores-Fuentes, W., Miranda-Vega, J. E., Rivas-López, M., Sergiyenko, O., Rodríguez-Quiñonez, J. C., Lindner, L., 2018. Comparison between different types of sensors used in the real operational environment based on optical scanning system. Sensors 18 (6). https://doi.org/10.3390/s18061684 | es_ES |
dc.description.references | Jayalakshmi, T., Santhakumaran, A., 2011. Statistical normalization and back propagation for classification. International Journal of Computer Theory and Engineering 3 (1), 1793-8201. https://doi.org/10.7763/IJCTE.2011.V3.288 | es_ES |
dc.description.references | Jo, H., Sim, S.-H., Tatkowski, A., Spencer Jr, B., Nelson, M. E., 2013. Feasibility of displacement monitoring using low-cost gps receivers. Structural Control and Health Monitoring 20 (9), 1240-1254. https://doi.org/10.1002/stc.1532 | es_ES |
dc.description.references | Jung, H. K., Park, G., 2018. Integrating passive-and active-sensing techniques using an l-shaped sensor array for impact and damage localization. Journal of Intelligent Material Systems and Structures 29 (17), 3436-3443. https://doi.org/10.1177/1045389X17733059 | es_ES |
dc.description.references | Lindner, L., Sergiyenko, O., Rodríguez-Quiñonez, J. C., Rivas-Lopez, M., Hernandez-Balbuena, D., Flores-Fuentes, W., Murrieta-Rico, F. N., Tyrsa, V., 2016. Mobile robot vision system using continuous laser scanning for industrial application. Industrial Robot: An International Journal. https://doi.org/10.1108/IR-01-2016-0048 | es_ES |
dc.description.references | Mims, F. M., Dec 2000. Solar radiometer with light-emitting diodes as spectrally-selective detectors. Appl. Opt. 39 (34), 6517-6518. http://ao.osa.org/abstract.cfm?URI=ao-39-34-6517, https://doi.org/10.1364/AO.39.006517 | es_ES |
dc.description.references | Miranda-Vega, J. E., Rivas-Lopez, M., Flores-Fuentes, W., Sergiyenko, O., Lindner, L., Rodríguez-Quiñonez, J. C., 2019. Implementación digital de filtros fir para la minimización del ruido óptico y optoelectrónico de un sistema de barrido óptico. Revista Iberoamericana de Automática e Informática industrial 16, 344-357. https://doi.org/10.4995/riai.2019.10210 | es_ES |
dc.description.references | Rivera-Castillo, J., Flores-Fuentes, W., Rivas-Lopez, M., Sergiyenko, O., Gonzalez-Navarro, F. F., Rodríguez-Quiñonez, J. C., Hernandez-Balbuena, D., Lindner, L., Básaca-Preciado, L. C., 2017. Experimental image and range scanner datasets fusion in shm for displacement detection. Structural Control and Health Monitoring 24 (10), e1967. https://doi.org/10.1002/stc.1967 | es_ES |
dc.description.references | Sergiyenko, O., Hernandez, W., Tyrsa, V., Cruz, L. F. D., Starostenko, O., Peña-Cabrera, M., 2009. Remote sensor for spatial measurements by using optical scanning. Sensors 9 (7), 5477-5492. https://doi.org/10.3390/s90705477 | es_ES |
dc.description.references | Van der Auweraer, H., Peeters, B., 2003. Sensors and systems for structural health monitoring. Journal of Structural Control 10(2), 117-125. https://doi.org/10.1002/stc.196710.1002/stc.21 | es_ES |
dc.description.references | X.Ba, Q.Pan, B.Ju, Z.Feng, 2017. Ultrafast displacement actuation of piezo- electric stacks with time-sequence. IEEE Transactions on Industrial Electronics 64, 2955-2961. https://doi.org/10.1002/stc.196710.1109/TIE.2016.2631119 | es_ES |